Subject Area: Science Unit Title: Water Cycle Grade Level: 6-8 Lesson Number: 1 of 10 Duration: 60 minutes Date: March 10, 2023 Teacher: Ms. Johnson Room: Science Lab

Curriculum Standards Alignment

Content Standards:

- Understand the water cycle and its processes
- · Explain the importance of water in the environment

Skills Standards:

- Analyze data and information
- Think critically and solve problems

Cross-Curricular Links:

- Math: data analysis and graphing
- Language Arts: reading and writing about science

Essential Questions & Big Ideas

Essential Questions:

- What is the water cycle and how does it work?
- Why is water important for our planet?

Enduring Understandings:

- The water cycle is a continuous process that sustains life on Earth
- · Water is essential for human survival and the environment

Student Context Analysis

Class Profile:

- Total Students: 25
- ELL Students: 5
- IEP/504 Plans: 3
- Gifted: 2

Learning Styles Distribution:

- Visual: 40%
- Auditory: 30%
- Kinesthetic: 30%

Pre-Lesson Preparation

Room Setup:

- Arrange desks in a U-shape for group work
- Set up whiteboard and markers

Technology Needs:

- Computer with internet access
- Projector and screen

Materials Preparation:

- Water cycle diagrams and handouts
- Whiteboard markers and eraser

Safety Considerations:

• Ensure students understand laboratory safety procedures

Detailed Lesson Flow

Pre-Class Setup (15 mins before)

- Set up room and technology
- Prepare materials and handouts
- Bell Work / Entry Task (5-7 mins)
 - · Have students write down what they know about the water cycle

Opening/Hook (10 mins)

• Show a video about the water cycle

Engagement Strategies:

- · Ask students to share their prior knowledge
- Use visual aids to engage students

Direct Instruction (20-25 mins)

• Explain the water cycle and its processes

Checking for Understanding:

- Ask students questions throughout the lesson
- Use formative assessments to check understanding

Guided Practice (25-30 mins)

· Have students work in groups to complete a water cycle diagram

Scaffolding Strategies:

- Provide guidance and support as needed
- Encourage students to ask questions

Independent Practice (20-25 mins)

• Have students write a short essay about the water cycle

Closure (10 mins)

• Review the key concepts of the lesson

Differentiation & Support Strategies

For Struggling Learners:

- Provide extra support and guidance
- Offer one-on-one instruction

For Advanced Learners:

- Provide additional challenges and extensions
- Encourage independent research

ELL Support Strategies:

- Provide visual aids and graphic organizers
- · Offer bilingual resources and support

Social-Emotional Learning Integration:

- Encourage teamwork and collaboration
- · Teach self-awareness and self-regulation skills

Assessment & Feedback Plan

Formative Assessment Strategies:

- Quizzes and class discussions
- Observations and feedback

Success Criteria:

- · Students will be able to explain the water cycle and its processes
- Students will be able to identify the importance of water in the environment

Feedback Methods:

- Verbal feedback and encouragement
- · Written feedback and comments

Homework & Extension Activities

Homework Assignment:

Have students research and write about a real-world application of the water cycle

Extension Activities:

- Have students create a model or diagram of the water cycle
- · Encourage students to research and present on a related topic

Parent/Guardian Connection:

Encourage parents/guardians to ask their child about the water cycle and its importance

Teacher Reflection Space

Pre-Lesson Reflection:

- What challenges do I anticipate?
- Which students might need extra support?
- What backup plans should I have ready?

Post-Lesson Reflection:

- What went well?
- What would I change?
- Next steps for instruction?

Introduction to Visual Thinking Routines

What are Visual Thinking Routines?

Visual Thinking Routines are a set of strategies used to promote critical thinking, creativity, and collaboration in the classroom

Benefits of Visual Thinking Routines:

- Encourage critical thinking and problem-solving
- · Promote creativity and innovation
- Foster collaboration and communication

20 Visual Thinking Routines for the Water Cycle Unit

Routine 1: See-Think-Wonder

Have students observe a diagram of the water cycle and write down what they see, think, and wonder

Routine 2: Claim-Support-Question

Have students make a claim about the water cycle, provide evidence to support it, and ask a question related to the topic

Implementation of Visual Thinking Routines

How to Implement Visual Thinking Routines:

- Introduce the routine and provide clear instructions
- Model the routine and provide examples
- · Have students work in pairs or small groups to complete the routine

Tips for Successful Implementation:

- Be flexible and adapt the routine to meet the needs of your students
- · Encourage students to take risks and think creatively
- · Provide feedback and encouragement throughout the process

Examples of Visual Thinking Routines in Action

Example 1: See-Think-Wonder

Have students observe a diagram of the water cycle and write down what they see, think, and wonder. Then, have them share their thoughts with a partner or the class

Example 2: Claim-Support-Question

Have students make a claim about the water cycle, provide evidence to support it, and ask a question related to the topic. Then, have them share their claim with a partner or the class

Assessment and Evaluation

Formative Assessments:

- Quizzes and class discussions
- Observations and feedback

Summative Assessments:

- Unit test on the water cycle
- · Project-based assessment on a real-world application of the water cycle

Evaluation of Student Learning

Criteria for Evaluation:

- Understanding of the water cycle and its processes
- · Ability to apply knowledge of the water cycle to real-world situations
- Critical thinking and problem-solving skills

Methods of Evaluation:

- Quizzes and tests
- Projects and presentations
- Class discussions and observations

Conclusion and Reflection

Conclusion:

The water cycle unit is an important part of the science curriculum, and visual thinking routines can be a valuable tool in promoting critical thinking and creativity in the classroom

Reflection:

- What did I learn from this unit?
- What would I do differently next time?
- · What are some potential areas for further study or exploration?

Final Thoughts and Recommendations

Final Thoughts:

The use of visual thinking routines in the water cycle unit can have a positive impact on student learning and engagement

Recommendations:

- Use visual thinking routines in other units and subjects
- Provide professional development opportunities for teachers to learn more about visual thinking routines
- Encourage students to use visual thinking routines in their everyday lives