

# **Computer System Architecture: Teaching Script**

Topic: Computer System Architecture
Level: College/University
Duration: 90 minutes (2 x 45-minute sessions)
Prior Knowledge Required: Basic computer usage, fundamental technology concepts
Key Vocabulary: CPU, RAM, Motherboard, Architecture, Cache, Clock Speed, Storage, PCIe
Learning Objectives:

- · Identify and explain the function of core computer components
- · Analyze the relationships between different system components
- Evaluate system performance based on component specifications
- Troubleshoot common hardware issues

| $\checkmark$ Deconstructed computer system | $\checkmark$ Component identification worksheets |  |
|--------------------------------------------|--------------------------------------------------|--|
| ✓ Digital presentation system              | ✓ Physical CPU samples                           |  |
| ✓ RAM modules                              | ✓ Storage devices (HDD/SSD)                      |  |
| ✓ Large motherboard diagram                | ✓ Anti-static equipment                          |  |

### **Pre-Session Preparation**

#### **Room Setup:**

- · Arrange workstations in U-shape for optimal demonstration visibility
- Set up component display area at front of room
- Ensure proper lighting for detailed component viewing
- Test all digital presentation equipment
- Prepare safety equipment (ESD straps, mats)

### **Common Student Misconceptions:**

- · Higher GHz always means better performance
- · More RAM automatically improves system speed
- · All SSDs perform the same
- Bigger power supplies are always better

# **Session Introduction (0-10 minutes)**

[Display deconstructed computer with components clearly visible]

"Today we're going to explore the heart of modern computing by understanding how these components work together to create a functioning computer system. Who can identify some of the components they see here?"

### **Opening Activity:**

- Have students identify visible components
- Record responses on board in system diagram format
- Begin building connections between components

### **Engagement Strategies:**

- Connect to students' personal devices
- Reference recent technology news
- Share real-world performance scenarios

# **CPU Architecture Deep Dive (10-25 minutes)**

[Hold up physical CPU specimen]

"This small piece of silicon is the brain of every computer. Let's understand what makes it tick."

### **CPU Fundamentals:**

- Clock Speed (GHz)
  - Base clock vs. boost clock
  - Relationship to performance
  - Thermal limitations
- Core Architecture
  - Single vs. multi-core processing
  - Thread handling
  - Instruction pipeline
- Cache System
  - L1, L2, L3 hierarchy
  - Cache latency impact
  - Size vs. speed tradeoffs

### **Teaching Approaches:**

- Visual Learners: Use CPU architecture diagrams
- · Kinesthetic Learners: Pipeline simulation activity
- Theoretical Learners: Technical specifications analysis

[Demonstrate CPU installation process]

### Safety Focus:

- Proper handling techniques
- Pin protection awareness
- Thermal paste application

"Memory is the workspace of our computer system. Let's explore how different memory types work together."

### **Memory Hierarchy:**

- 1. Cache Memory
  - Speed: 0.5-15ns access time
  - Capacity: KB to MB
  - Cost: Highest per GB
- 2. Main Memory (RAM)
  - Speed: 50-100ns access time
  - Capacity: GB range
  - Volatile storage
- 3. Storage Memory
  - Speed: ms to µs range
  - Capacity: TB range
  - Non-volatile storage

#### **Interactive Elements:**

- · Memory hierarchy pyramid building
- Access time comparison activities
- Cost-benefit analysis exercises

### Storage Systems (40-55 minutes)

[Display various storage devices: HDD, SSD, M.2 drive]

"Let's explore how modern computers store data permanently and the evolution of storage technology."

| Feature                 | HDD          | SATA SSD     | NVMe SSD       |
|-------------------------|--------------|--------------|----------------|
| Speed (Sequential Read) | 150-200 MB/s | 550-600 MB/s | 3500-7000 MB/s |
| Latency                 | High (ms)    | Low (µs)     | Very Low (µs)  |
| Cost per TB             | Lowest       | Medium       | Highest        |

### Hands-on Activity:

- 1. Storage speed testing demonstration
- 2. File transfer comparisons
- 3. Boot time analysis
- 4. Cost calculation exercise

# Motherboard Architecture (55-70 minutes)

"The motherboard is the foundation that connects all components. Understanding its architecture is crucial for system building and troubleshooting."

### **Critical Components:**

- Chipset
  - North Bridge functions
  - South Bridge functions
  - Modern integrated designs
- Bus Systems
  - PCIe lanes and versions
  - DMI interface
  - Memory bus
- Power Delivery
  - VRM design
  - Power phases
  - Cooling requirements

# System Integration (70-80 minutes)

### **Building a Balanced System**

Consider the following scenario: A content creator needs a new workstation for video editing and 3D rendering.

### System Requirements:

- CPU: High multi-core performance
- RAM: 32GB minimum
- Storage: Fast NVMe + Large capacity
- GPU: Professional grade

### **Class Discussion Points:**

- Component selection rationale
- Budget allocation
- Upgrade paths
- Performance bottlenecks

### System Tuning:

- BIOS Settings
  - XMP profiles
  - Boot sequence
  - Power management
- Operating System
  - Power plans
  - Process priority
  - Resource allocation
- Monitoring Tools
  - Temperature tracking
  - Performance metrics
  - Resource utilization

# Assessment and Review (85-90 minutes)

### Knowledge Check:

- 1. What determines CPU performance besides clock speed?
- 2. How does cache memory improve system performance?
- 3. Compare advantages of different storage types.
- 4. Explain the role of the chipset in modern motherboards.

### Hands-on Evaluation:

- Component identification test
- System building simulation
- Performance analysis task
- Troubleshooting scenario

### **Extended Learning:**

- Research current CPU architectures
- · Compare system builds within budget constraints
- Analyze real-world benchmark results
- Create system upgrade proposals

### **Digital Materials:**

- CPU architecture simulators
- Virtual system builder tools
- Performance benchmarking software
- Component compatibility checkers

# Further Reading:

- Technical documentation
- Industry white papers
- Performance analysis guides
- Troubleshooting manuals

### **Practical Assessment Tasks**

- Component identification quiz
- System building simulation
- Performance analysis worksheet
- Troubleshooting scenarios

# **Key Learning Points Review**

- CPU architecture and performance metrics
- Memory hierarchy and data flow
- Storage solutions and considerations
- System integration principles

# **Extended Learning**

Research Task: Compare and contrast current market CPU architectures, focusing on:

- Performance benchmarks
- Power efficiency
- Cost effectiveness
- Target market segments

© Planit Teachers 2024 - Computer System Architecture Teaching Script End of Document