

Subject Area: Science

Unit Title: Thermal Energy Transfer

Grade Level: 9

Lesson Number: 1 of 5

Duration: 90 minutes **Date:** March 10, 2023 **Teacher:** Ms. Johnson **Room:** Science Lab

Curriculum Standards Alignment

Content Standards:

- Understand the concept of thermal energy transfer
- Identify the three mechanisms of heat transfer: conduction, convection, and radiation

Skills Standards:

- Design and conduct experiments to measure thermal energy transfer
- · Analyze data and draw conclusions

Cross-Curricular Links:

- · Mathematics: data analysis and graphing
- English: scientific writing and communication

Essential Questions & Big Ideas

Essential Questions:

- What is thermal energy transfer?
- · How do the three mechanisms of heat transfer occur in various systems?

Enduring Understandings:

- Thermal energy transfer is a fundamental concept in science and engineering
- · Understanding the three mechanisms of heat transfer is crucial for designing and optimizing systems

Student Context Analysis

Class Profile:

Total Students: 25ELL Students: 5IEP/504 Plans: 3

• Gifted: 2

Learning Styles Distribution:

Visual: 40%Auditory: 30%Kinesthetic: 30%

Pre-Lesson Preparation

Room Setup:

- Arrange tables and chairs to facilitate group work
- Set up equipment and materials for experiments

Technology Needs:

- · Computers with internet access
- · Thermal energy transfer simulation software

Materials Preparation:

- · Thermal energy transfer kit
- · Graph paper and pencils

Safety Considerations:

- · Wear gloves and goggles during experiments
- · Ensure students understand procedures and safety protocols

Detailed Lesson Flow

Introduction to Thermal Energy Transfer (10 minutes)

- Introduce the concept of thermal energy transfer
- Discuss the three mechanisms of heat transfer: conduction, convection, and radiation

Designing an Experiment to Measure Conduction (20 minutes)

- · Have students design an experiment to measure conduction
- Provide materials and equipment for the experiment

Engagement Strategies:

- Group work and discussion
- · Hands-on activities and experiments

Conducting an Experiment to Measure Convection (25 minutes)

- · Have students conduct an experiment to measure convection
- · Provide a convection current apparatus and materials

Checking for Understanding:

- Formative assessment and feedback
- · Group discussion and reflection

Differentiation & Support Strategies

For Struggling Learners:

- Graphic organizers to help plan and design experiments
- Simplified examples and visual aids to illustrate complex concepts

For Advanced Learners:

- · More complex experiments and designs
- Open-ended questions and problems to solve

ELL Support Strategies:

- · Visual aids and graphic organizers to support language development
- Simplified language and instructions

Social-Emotional Learning Integration:

- · Teamwork and collaboration
- · Self-reflection and self-assessment

Assessment & Feedback Plan

Formative Assessment Strategies:

- · Group discussions and reflections
- · Formative quizzes and assessments

Success Criteria:

- Understand the concept of thermal energy transfer
- · Design and conduct experiments to measure thermal energy transfer

Feedback Methods:

- · Verbal feedback and discussion
- Written feedback and comments

Introduction to Thermal Energy Transfer

Introduction:

Welcome to this lesson on designing and conducting experiments to measure and control thermal energy transfer in various systems. This lesson is designed for 14-year-old students and aims to introduce them to the fundamental concepts of thermal energy transfer, including conduction, convection, and radiation.

Objectives:

- Understand the concept of thermal energy transfer
- Identify the three mechanisms of heat transfer: conduction, convection, and radiation

Prior Knowledge

Prior Knowledge:

- · Energy transfer
- Thermodynamics
- Experimental design
- Data analysis

Procedure

Section 1: Introduction to Thermal Energy Transfer

- Introduce the topic of thermal energy transfer and its importance in everyday life
- Use real-world examples to illustrate the concepts of conduction, convection, and radiation

Section 2: Designing an Experiment to Measure Conduction

- Have students design an experiment to measure conduction
- Provide materials and equipment for the experiment

Section 3: Conducting an Experiment to Measure Convection

Section 3: Conducting an Experiment to Measure Convection

- · Have students conduct an experiment to measure convection
- Provide a convection current apparatus and materials

Differentiated Activities for Mixed-Ability Groups

For Struggling Learners:

- Graphic organizers to help plan and design experiments
- Simplified examples and visual aids to illustrate complex concepts

For Advanced Learners:

- More complex experiments and designs
- Open-ended questions and problems to solve

Assessment and Evaluation

Assessment and Evaluation:

- · Participation and engagement during the experiments and activities
- Quality of the experiment design and data collection
- · Accuracy and completeness of the data analysis and conclusions

Conclusion and Reflection

Conclusion:

In conclusion, designing and conducting experiments to measure and control thermal energy transfer in various systems is a complex and fascinating topic that requires careful consideration of safety protocols, experimental design, and data analysis.

Reflection:

- What did students learn from the lesson?
- · What challenges did students face during the experiments and activities?

Extension Activities

Extension Activities:

- Building a solar oven to demonstrate thermal energy transfer through radiation
- Conducting an experiment to measure the thermal conductivity of different materials

Parent Engagement

Parent Engagement:

- Parent-child science night to conduct experiments and activities together
- Thermal energy transfer newsletter to provide updates on student progress and tips for supporting learning

Safety Considerations

Safety Considerations:

- Wear gloves and goggles during experiments
- Ensure students understand procedures and safety protocols

Teaching Tips

Teaching Tips:

- Use real-world examples to illustrate complex concepts
- Incorporate hands-on activities and experiments to engage students

Key Takeaways

Key Takeaways:

- Understanding the three mechanisms of heat transfer: conduction, convection, and radiation
- Designing and conducting experiments to measure thermal energy transfer

Reflection Questions

Reflection Questions:

- How effectively did students understand the three mechanisms of heat transfer?
- What challenges did students face during the experiments and activities?

Next Steps

Next Steps:

- Lesson 2: Optimizing Energy Efficiency in Buildings
- Lesson 3: Developing New Materials with Improved Thermal Properties