

Building Science: Insulation and Environmental Impact

Learning Objectives

- Understand thermal principles and insulation materials
- Calculate R-values and heat loss in building systems
- Evaluate environmental impact of different insulation materials
- Apply practical installation knowledge

Part 1: Material Properties Investigation

Match each insulation material with its correct properties by drawing lines between them:

Materials:

Mineral Wool

Expanded Polystyrene (EPS)

Extruded Polystyrene (XPS)

Cellulose

Properties:

Fire-resistant, sound-absorbing, non-combustible

Lightweight, good thermal resistance, moisture-sensitive

High compression strength, waterresistant, durable

Recycled content, eco-friendly, good fire resistance

Part 2: R-Value Calculations

Problem 1: Calculate the R-value for the following wall assembly:

Given:

- Wall thickness (d) = 25cm = 0.25m
- Thermal conductivity (λ) = 0.040 W/mK
- Formula: R = d/λ

Show your work here:

6				
the set of the set of the set of the set of the	 	 	 	

Part 3: Thermal Bridge Investigation

Study the building section diagram below and identify potential thermal bridges:

[Building Section Diagram]

Location	Why is it a thermal bridge?	Proposed Solution		

Part 4: Cost Analysis Exercise Calculate the following for a residential wall insulation project: Given: • Wall area: 120m² • Material cost: 45 lei/m² • Labor cost: 30 lei/m² • Expected energy savings: 25 lei/m²/year a) Calculate total installation cost: b) Calculate payback period in years:

Part 5: Environmental Impact Assessment

Complete the following impact assessment matrix for different insulation materials:

Material Type	Manufacturing Energy (1-5)	Transportation Impact (1-5)	Installation Waste (1-5)	Recyclability (1-5)	Overall Score
Mineral Wool					
EPS					
XPS					
Cellulose					

Based on your completed matrix, answer the following questions:

- 1. Which material has the lowest environmental impact? Explain why.
- 2. What factors make some materials more environmentally friendly than others?

3. How could the environmental impact of these materials be reduced?

Part 6: Installation Techniques Laboratory

Document the proper installation sequence for cavity wall insulation:

Step	Procedure	Safety Considerations
1. Preparation		
2. Inspection		
3. Installation		
4. Finishing		

Part 7: Moisture Control Analysis

Case Study: Residential Building in Humid Climate

A two-story residential building in a coastal area is experiencing condensation issues within its wall assembly. Review the following data and propose solutions:

- External temperature: 5°C
- Internal temperature: 21°C
- Relative humidity (internal): 65%
- Wall construction: Brick-cavity-block

Part 8: Energy Performance Calculations

Exercise 1: Heat Loss Calculation

Calculate the heat loss through a wall using the following formula:

 $Q = U \times A \times \Delta T$

Where:

- Q = Heat loss in watts (W)
- U = U-value of wall (W/m²K)
- A = Area of wall (m²)
- ΔT = Temperature difference (K)

Given values:

- Wall U-value = 0.28 W/m²K
- Wall area = 85m²
- External temperature = -5°C
- Internal temperature = 20°C

Show your calculations here:

Part 9: Building Regulations Compliance

Review the following building regulations and mark compliance:

Requirement	Compliant?	Reference
Minimum U-value for external walls		BR443
Fire resistance of insulation materials		BS476
Vapor barrier installation		BS5250

Part 10: Sustainable Design Integration

Green Building Challenge:

Design an energy-efficient wall assembly that meets the following criteria:

- Maximum U-value: 0.15 W/m²K
- Minimum 30% recycled content
- Local sourcing (within 100km)
- Zero VOC emissions

Complete the design specification:

Layer	Material	Thickness	R-value
External			
Layer 2			
Layer 3			
Internal			

Part 11: Final Assessment

Complete the following questions to demonstrate understanding:

- 1. Explain the relationship between thermal conductivity and R-value.
- 2. Describe three methods to prevent thermal bridging in building construction.

3. Compare and contrast the environmental impact of mineral wool and EPS insulation.

- 4. Calculate the payback period for an insulation upgrade project given:
 - Installation cost: 15,000 lei
 - Annual energy savings: 2,500 lei
 - Maintenance cost: 200 lei/year

Final Notes

Remember to submit your completed worksheet to your instructor. Make sure you have:

- Completed all calculations and shown your work
- Filled in all tables and matrices
- Provided detailed explanations where required
- Double-checked your environmental impact assessments

Additional Resources:

- Building Science Reference Guide
- Thermal Calculations Handbook
- Environmental Impact Assessment Guidelines