
Program Development Life Cycle and Phase Identification
Introduction

The program development life cycle (PDLC) is a framework used in software development to plan, design, implement, test, and maintain software
applications. Understanding the PDLC is essential for software developers, as it helps them to develop high-quality software products that meet
customer requirements and are delivered on time and within budget.

This lesson plan is designed to equip students with the knowledge and skills necessary to navigate the software development process effectively.
The PDLC is a critical component of software development, and its phases are essential for ensuring that software products are developed
efficiently and effectively.

Learning Outcomes

Define the program development life cycle (PDLC) and its phases.
Identify and explain the importance of each phase in the PDLC.
Recognize the different methodologies used in software development.
Apply their understanding of the PDLC to real-world software development scenarios.
Use key terminology related to the PDLC.



Program Development Life Cycle and Phase Identification
Week 1: Introduction to Software Development

Session 1: Introduction to the Program Development Life Cycle

Learning Outcome: Define the program development life cycle (PDLC) and its phases.

Trainer Activities: Deliver a lecture on the introduction to the PDLC, facilitate group discussions on the importance of the PDLC in software
development.

Trainee Activities: Participate in class discussions, complete a worksheet on the PDLC phases.

Resources & Refs: Software Development Life Cycle by Ian Sommerville, online resources such as IBM, Microsoft, and Oracle websites.

Learning Checks/assessments: Quiz on the introduction to the PDLC.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.

Session 2: Phase Identification and Methodologies

Learning Outcome: Identify and explain the importance of each phase in the PDLC, recognize the different methodologies used in software
development.

Trainer Activities: Facilitate group discussions on phase identification and methodologies, provide guidance on requirements gathering and
feasibility studies.

Trainee Activities: Work in groups to identify and explain the phases of the PDLC, complete requirements gathering and feasibility studies
exercises.

Resources & Refs: Agile Software Development by Craig Larman, Software Engineering by Roger S. Pressman.

Learning Checks/assessments: Group presentation on phase identification and methodologies.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.



Program Development Life Cycle and Phase Identification
Week 2: Software Requirements Gathering and Feasibility Studies

Session 3: Requirements Gathering and Feasibility Studies

Learning Outcome: Apply their understanding of the PDLC to real-world software development scenarios, use key terminology related to the
PDLC.

Trainer Activities: Provide guidance on requirements gathering and feasibility studies, supervise design and implementation activities.

Trainee Activities: Complete requirements gathering and feasibility studies exercises, design and implement software applications.

Resources & Refs: Software Requirements by Karl Wiegers, online resources such as IBM, Microsoft, and Oracle websites.

Learning Checks/assessments: Requirements gathering and feasibility studies exercises.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.

Session 4: Design and Implementation

Learning Outcome: Design and implement software applications using the PDLC phases.

Trainer Activities: Supervise design and implementation activities, conduct testing and maintenance exercises.

Trainee Activities: Design and implement software applications, conduct testing and maintenance exercises.

Resources & Refs: Software Design by David A. Taylor, online resources such as IBM, Microsoft, and Oracle websites.

Learning Checks/assessments: Design and implementation project.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.



Program Development Life Cycle and Phase Identification
Week 3: Software Testing and Maintenance

Session 5: Testing and Maintenance

Learning Outcome: Test and maintain software applications using the PDLC phases.

Trainer Activities: Conduct testing and maintenance exercises, provide feedback on student projects.

Trainee Activities: Conduct testing and maintenance exercises, complete a final project.

Resources & Refs: Software Testing by Boris Beizer, online resources such as IBM, Microsoft, and Oracle websites.

Learning Checks/assessments: Testing and maintenance exercises.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.

Assessment

Quiz on the introduction to the PDLC: 20%
Group presentation on phase identification and methodologies: 20%
Requirements gathering and feasibility studies exercises: 20%
Design and implementation project: 20%
Testing and maintenance exercises: 20%



Program Development Life Cycle and Phase Identification
Resources

Software Development Life Cycle by Ian Sommerville
Agile Software Development by Craig Larman
Software Engineering by Roger S. Pressman
Online resources such as IBM, Microsoft, and Oracle websites

Reflections and Next Steps

Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.

The next steps in the lesson progression are:

Lesson 2: Software Requirements Gathering and Feasibility Studies
Lesson 3: Software Design and Implementation
Lesson 4: Software Testing and Maintenance



Program Development Life Cycle and Phase Identification
Learning Outcome and Session Details

Week Session Session Title Learning
Outcome

Trainer
Activities

Trainee
Activities

Resources
& Refs

Learning
Checks/assessments

Reflections
& Date

1 1
Introduction to
the Program
Development
Life Cycle

Define the
program
development
life cycle
(PDLC) and
its phases.

Deliver a
lecture on the
introduction to
the PDLC,
facilitate group
discussions on
the importance
of the PDLC in
software
development.

Participate in
class
discussions,
complete a
worksheet
on the PDLC
phases.

Software
Development
Life Cycle by
Ian
Sommerville,
online
resources
such as IBM,
Microsoft,
and Oracle
websites.

Quiz on the
introduction to the
PDLC.

Reflections
on the
lesson will
be
conducted
on a weekly
basis, with
a final
reflection at
the end of
the course.

1 2
Phase
Identification
and
Methodologies

Identify and
explain the
importance of
each phase in
the PDLC,
recognize the
different
methodologies
used in
software
development.

Facilitate
group
discussions on
phase
identification
and
methodologies,
provide
guidance on
requirements
gathering and
feasibility
studies.

Work in
groups to
identify and
explain the
phases of
the PDLC,
complete
requirements
gathering
and
feasibility
studies
exercises.

Agile
Software
Development
by Craig
Larman,
Software
Engineering
by Roger S.
Pressman.

Group presentation on
phase identification
and methodologies.

Reflections
on the
lesson will
be
conducted
on a weekly
basis, with
a final
reflection at
the end of
the course.



Program Development Life Cycle and Phase Identification
Conclusion

In conclusion, the program development life cycle (PDLC) is a critical component of software development, and its phases are essential for
ensuring that software products are developed efficiently and effectively.

By following this lesson plan, students will gain a comprehensive understanding of the PDLC and its phases, as well as the skills and knowledge
necessary to develop high-quality software products.



Software Design and Implementation

Software design and implementation are critical phases of the program development life cycle. During the design phase, the software's architecture,
components, and interfaces are defined. The implementation phase involves writing the code and testing the software. In this section, we will explore
the key concepts and techniques involved in software design and implementation.

Example: Designing a Simple Software Application

Let's consider a simple software application that allows users to manage their to-do lists. The design phase would involve defining the application's
architecture, including the user interface, data storage, and business logic. The implementation phase would involve writing the code for the
application, using a programming language such as Java or Python.

Key concepts in software design and implementation include:

Modularity: breaking down the software into smaller, independent modules
Reusability: designing software components that can be reused in other applications
Scalability: designing software that can handle increased traffic or usage
Security: designing software that is secure and protects user data

Software Testing and Maintenance

Software testing and maintenance are critical phases of the program development life cycle. Testing involves verifying that the software meets the
requirements and works as expected, while maintenance involves updating and fixing the software after it has been released. In this section, we will
explore the key concepts and techniques involved in software testing and maintenance.

Case Study: Testing and Maintaining a Complex Software System

Let's consider a complex software system that involves multiple components and interfaces. Testing such a system would require a comprehensive
testing plan, including unit testing, integration testing, and system testing. Maintenance would involve updating the software to fix bugs and add new
features, while ensuring that the changes do not introduce new bugs or affect the existing functionality.

Key concepts in software testing and maintenance include:

Test-driven development: writing tests before writing the code
Continuous integration: integrating and testing the code continuously
Defect tracking: tracking and fixing defects found during testing
Release management: managing the release of new software versions

Software Project Management

Software project management involves planning, organizing, and controlling the software development process. It includes defining the project
scope, schedule, and budget, as well as managing the project team and stakeholders. In this section, we will explore the key concepts and
techniques involved in software project management.

Example: Managing a Software Development Project

Let's consider a software development project that involves a team of developers, designers, and testers. The project manager would need to define
the project scope, schedule, and budget, as well as manage the team and stakeholders. This would involve creating a project plan, tracking progress,
and making adjustments as needed.

Key concepts in software project management include:

Agile project management: managing projects using agile methodologies
Waterfall project management: managing projects using a linear approach
Project planning: defining the project scope, schedule, and budget
Project tracking: tracking progress and making adjustments as needed

Software Quality Assurance

Software quality assurance involves ensuring that the software meets the required standards and is free from defects. It includes activities such as
testing, inspection, and review. In this section, we will explore the key concepts and techniques involved in software quality assurance.

Case Study: Ensuring Software Quality in a Complex System

Let's consider a complex software system that involves multiple components and interfaces. Ensuring software quality would require a
comprehensive quality assurance plan, including testing, inspection, and review. This would involve identifying and mitigating risks, as well as
ensuring that the software meets the required standards.

Key concepts in software quality assurance include:

Quality planning: defining the quality standards and objectives



Quality control: ensuring that the software meets the quality standards
Quality assurance: ensuring that the software development process is adequate
Testing: verifying that the software meets the requirements and works as expected

Software Configuration Management

Software configuration management involves managing the changes to the software and its components. It includes activities such as version
control, change management, and release management. In this section, we will explore the key concepts and techniques involved in software
configuration management.

Example: Managing Software Configurations

Let's consider a software development project that involves multiple components and interfaces. Managing software configurations would require a
comprehensive configuration management plan, including version control, change management, and release management. This would involve
tracking changes, managing different versions, and ensuring that the software is properly configured.

Key concepts in software configuration management include:

Version control: managing different versions of the software
Change management: managing changes to the software and its components
Release management: managing the release of new software versions
Configuration management: managing the software configurations and components

Software Engineering Ethics

Software engineering ethics involves applying ethical principles to the software development process. It includes activities such as ensuring that the
software is safe, secure, and reliable, as well as respecting the rights and privacy of users. In this section, we will explore the key concepts and
techniques involved in software engineering ethics.

Case Study: Applying Ethical Principles in Software Development

Let's consider a software development project that involves collecting and storing user data. Applying ethical principles would require ensuring that
the software is safe, secure, and reliable, as well as respecting the rights and privacy of users. This would involve considering the potential risks and
consequences of the software, as well as ensuring that the software is designed and developed with ethical principles in mind.

Key concepts in software engineering ethics include:

Respect for privacy: respecting the rights and privacy of users
Non-maleficence: doing no harm to users or others
Beneficence: doing good and promoting the well-being of users
Autonomy: respecting the autonomy of users and their decisions

Program Development Life Cycle and Phase Identification
Introduction

The program development life cycle (PDLC) is a framework used in software development to plan, design, implement, test, and maintain software
applications. Understanding the PDLC is essential for software developers, as it helps them to develop high-quality software products that meet
customer requirements and are delivered on time and within budget.

This lesson plan is designed to equip students with the knowledge and skills necessary to navigate the software development process effectively.
The PDLC is a critical component of software development, and its phases are essential for ensuring that software products are developed
efficiently and effectively.

Learning Outcomes

Define the program development life cycle (PDLC) and its phases.
Identify and explain the importance of each phase in the PDLC.
Recognize the different methodologies used in software development.
Apply their understanding of the PDLC to real-world software development scenarios.
Use key terminology related to the PDLC.



Program Development Life Cycle and Phase Identification
Week 1: Introduction to Software Development

Session 1: Introduction to the Program Development Life Cycle

Learning Outcome: Define the program development life cycle (PDLC) and its phases.

Trainer Activities: Deliver a lecture on the introduction to the PDLC, facilitate group discussions on the importance of the PDLC in software
development.

Trainee Activities: Participate in class discussions, complete a worksheet on the PDLC phases.

Resources & Refs: Software Development Life Cycle by Ian Sommerville, online resources such as IBM, Microsoft, and Oracle websites.

Learning Checks/assessments: Quiz on the introduction to the PDLC.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.

Session 2: Phase Identification and Methodologies

Learning Outcome: Identify and explain the importance of each phase in the PDLC, recognize the different methodologies used in software
development.

Trainer Activities: Facilitate group discussions on phase identification and methodologies, provide guidance on requirements gathering and
feasibility studies.

Trainee Activities: Work in groups to identify and explain the phases of the PDLC, complete requirements gathering and feasibility studies
exercises.

Resources & Refs: Agile Software Development by Craig Larman, Software Engineering by Roger S. Pressman.

Learning Checks/assessments: Group presentation on phase identification and methodologies.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.



Program Development Life Cycle and Phase Identification
Week 2: Software Requirements Gathering and Feasibility Studies

Session 3: Requirements Gathering and Feasibility Studies

Learning Outcome: Apply their understanding of the PDLC to real-world software development scenarios, use key terminology related to the
PDLC.

Trainer Activities: Provide guidance on requirements gathering and feasibility studies, supervise design and implementation activities.

Trainee Activities: Complete requirements gathering and feasibility studies exercises, design and implement software applications.

Resources & Refs: Software Requirements by Karl Wiegers, online resources such as IBM, Microsoft, and Oracle websites.

Learning Checks/assessments: Requirements gathering and feasibility studies exercises.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.

Session 4: Design and Implementation

Learning Outcome: Design and implement software applications using the PDLC phases.

Trainer Activities: Supervise design and implementation activities, conduct testing and maintenance exercises.

Trainee Activities: Design and implement software applications, conduct testing and maintenance exercises.

Resources & Refs: Software Design by David A. Taylor, online resources such as IBM, Microsoft, and Oracle websites.

Learning Checks/assessments: Design and implementation project.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.



Program Development Life Cycle and Phase Identification
Week 3: Software Testing and Maintenance

Session 5: Testing and Maintenance

Learning Outcome: Test and maintain software applications using the PDLC phases.

Trainer Activities: Conduct testing and maintenance exercises, provide feedback on student projects.

Trainee Activities: Conduct testing and maintenance exercises, complete a final project.

Resources & Refs: Software Testing by Boris Beizer, online resources such as IBM, Microsoft, and Oracle websites.

Learning Checks/assessments: Testing and maintenance exercises.

Reflections & Date: Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.

Assessment

Quiz on the introduction to the PDLC: 20%
Group presentation on phase identification and methodologies: 20%
Requirements gathering and feasibility studies exercises: 20%
Design and implementation project: 20%
Testing and maintenance exercises: 20%



Program Development Life Cycle and Phase Identification
Resources

Software Development Life Cycle by Ian Sommerville
Agile Software Development by Craig Larman
Software Engineering by Roger S. Pressman
Online resources such as IBM, Microsoft, and Oracle websites

Reflections and Next Steps

Reflections on the lesson will be conducted on a weekly basis, with a final reflection at the end of the course.

The next steps in the lesson progression are:

Lesson 2: Software Requirements Gathering and Feasibility Studies
Lesson 3: Software Design and Implementation
Lesson 4: Software Testing and Maintenance



Program Development Life Cycle and Phase Identification
Learning Outcome and Session Details

Week Session Session Title Learning
Outcome

Trainer
Activities

Trainee
Activities

Resources
& Refs

Learning
Checks/assessments

Reflections
& Date

1 1
Introduction to
the Program
Development
Life Cycle

Define the
program
development
life cycle
(PDLC) and
its phases.

Deliver a
lecture on the
introduction to
the PDLC,
facilitate group
discussions on
the importance
of the PDLC in
software
development.

Participate in
class
discussions,
complete a
worksheet
on the PDLC
phases.

Software
Development
Life Cycle by
Ian
Sommerville,
online
resources
such as IBM,
Microsoft,
and Oracle
websites.

Quiz on the
introduction to the
PDLC.

Reflections
on the
lesson will
be
conducted
on a weekly
basis, with
a final
reflection at
the end of
the course.

1 2
Phase
Identification
and
Methodologies

Identify and
explain the
importance of
each phase in
the PDLC,
recognize the
different
methodologies
used in
software
development.

Facilitate
group
discussions on
phase
identification
and
methodologies,
provide
guidance on
requirements
gathering and
feasibility
studies.

Work in
groups to
identify and
explain the
phases of
the PDLC,
complete
requirements
gathering
and
feasibility
studies
exercises.

Agile
Software
Development
by Craig
Larman,
Software
Engineering
by Roger S.
Pressman.

Group presentation on
phase identification
and methodologies.

Reflections
on the
lesson will
be
conducted
on a weekly
basis, with
a final
reflection at
the end of
the course.



Program Development Life Cycle and Phase Identification
Conclusion

In conclusion, the program development life cycle (PDLC) is a critical component of software development, and its phases are essential for
ensuring that software products are developed efficiently and effectively.

By following this lesson plan, students will gain a comprehensive understanding of the PDLC and its phases, as well as the skills and knowledge
necessary to develop high-quality software products.


