[The complete HTML document follows the template, with the content generated based on the MYP Science Criteria B and C analysis]

MYP Science: Scientific Investigation Assessment

Student Name: Grade Level: MYP Year 4

Teacher: _____ **Date:** {{DATE}}}

Assessment Overview

Duration: 2 hours **Total Marks:** 60

Scientific Inquiry

Focus Areas: • Design and Problem Solving

• Material Properties Research

Assessment Instructions:

- 1. Read all sections carefully before beginning.
- 2. Demonstrate scientific thinking and methodical approach.
- 3. Show all working, calculations, and reasoning.
- 4. Use additional pages if needed for detailed explanations.
- 5. Focus on clarity, precision, and critical analysis.

Page | MYP Science Assessment

Criterion B: Scientific Inquiry Investigation

Investigation Challenge [25 marks]

Research Question: How do different environmental conditions affect the mechanical properties of polymer materials?

- a) Develop a precise research question for investigating polymer material properties [5 marks]
- b) Design a controlled experiment to test your research question, including:
 - Hypothesis
 - Variable identification
 - Experimental procedure
 - Safety considerations
- c) Create a data collection table and explain your measurement techniques [5 marks]
- d) Analyze and interpret your experimental results, including:
 - Graphical representation
 - Statistical analysis
 - Identification of patterns
- e) Critically evaluate your experimental methodology and suggest improvements [5 marks]

Criterion C: Design and Problem Solving

Design Challenge [25 marks]

- Design Challenge: Develop an innovative solution to address a real-world material science problem.
- a) Define a specific scientific design challenge related to material properties [5 marks]
- b) Develop a comprehensive design solution, including:
 - Conceptual design
 - Technical specifications
 - Constraint considerations
- c) Create a prototype design or detailed technical diagram [5 marks]
- d) Develop a testing and evaluation methodology for your design [5 marks]
- e) Reflect on potential improvements and real-world applications [5 marks] Assessment Rubric and Scoring Guide

Criterion B: Scientific Inquiry Rubric

Level	Description	Marks
0	Minimal scientific investigation skills	1-2
1	Basic scientific investigation approach	3-4
2	Coherent scientific investigation approach	5-6
3	Comprehensive scientific investigation	7-8

Criterion C: Design Problem Solving Rubric

Level	Description	Marks
0	Minimal design approach	1-2
1	Basic design strategy	3-4
2	Coherent design approach	5-6
3	Sophisticated design approach	7-8