

Biological Molecules: Student Activity Workbook

Learning Objectives and Introduction

Welcome to your exploration of biological molecules! By the end of these activities, you will be able to:

- Identify and describe the four main types of biological molecules
- Understand how molecular structure relates to function
- Analyze molecular interactions in living systems
- Apply molecular biology concepts to real-world scenarios

	Pre-Assessmen	t Knowledd	ae Check ((15 minutes)
--	---------------	------------	------------	--------------

Rate your current understanding of each topic from 1 (lowest) to 5 (highest):

Topic	Current Understanding (1-5)	What I Want to Learn
Proteins		
Carbohydrates		
Lipids		
Nucleic Acids		

Activity 1: Molecular Structure Detective (30 minutes)
Examine each molecular diagram and complete the analysis tasks below:
Molecule A: Protein Structure
Identify the basic building blocks of this molecule:
2. Draw and label the peptide bond formation:
3. List three functions of proteins in living organisms:
Molecule B: Carbohydrate Analysis
Draw the structure of a glucose molecule:
2. Explain how glucose molecules join to form: o Maltose:
Starch:

Complete these experime	ental design challenges:				
Obeller ve A. Freeven					
Challenge 1: Enzym					
	investigate the effect of temperature on enzyme activity.				
Component	Your Plan				
Hypothesis					
Variables					
Method					
Expected Results					
Scientific Reasoning					
Explain why temperature affects enzyme activity:					
2. Predict what would happen if the pH was changed:					
3. Connect this to real-world biological processes:					

Activity 2: Molecular Function Investigation (25 minutes)

Activity 3:	Lipid Analy	sis and Inves	tigation (40	minutes)

Explore the properties and functions of different lipid molecules:

Part 1: Membrane Structure Investigation

Draw and label a phospholipid bilayer showing:

- Hydrophilic heads
- Hydrophobic tails
- Embedded proteins
- Cholesterol molecules

Membrane Fluidity Factors

Factor	Effect on Fluidity	Explanation
Temperature		
Cholesterol		
Saturation		

DNA vs RNA Comparison				
Feature	DNA	RNA		
Sugar Type				
Base Pairs				
Structure				
Function				
ONA Replication Practice				

Activity 4: Nucleic Acid Structure and Function (45 minutes)

Complete the complementary DNA strand using base-pairing rules:

Complementary strand: __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Original strand: ATGCCATAGCTA

Activity 5: Molecular Interactions Case Studies (35 minutes)

Scenario: A	patient has a	condition	affecting t	their lactase	e enzyme	production.

\sim	Dear the	بمالمهما ادما	عماما مد		4:
۷.	Diaw the	lock-and-key	/ model of	enzyme	action.

\sim	O 1		1 1	
٠.	SHAADET	moleciliar	ום/יםו	COLLITIONS
J.	Juducsi	molecular-		SUIULIULIS

Case Study 2: Membrane Transport

Scenario: Analyzing cell membrane transport in different conditions.

Condition	Transport Type	Energy Required?
High to Low Concentration		
Low to High Concentration		

Activity 6: Molecular Biology Applications (30 minutes)
Real-World Applications
Research and explain how molecular biology is used in:
Medical Diagnostics
Explain the role of biological molecules in: Disease detection Genetic testing Drug development
Biotechnology
Describe applications in: Genetic engineering Protein production Biofuel development
Final Reflection 1. How has your understanding of biological molecules improved?
What connections can you make between different molecular types?
2. What connections can year make between americal increasing types:
3. How might this knowledge influence your future studies or career?

Final Reflection and Assessment				
Congratulations on completing your biological molecules investigation! Please complete this final reflection:				
Learning Journey Review				
1. The most important concept I learned today was:				
2. One question I still have is:				
3. I would like to learn more about:				
Self-Assessment				
Learning Objective	Achieved? (√/✗)	Evidence		
I can identify biological molecules				
understand structure-function relationships				
I can analyze molecular interactions				
Teacher Feedback				
For teacher use only:				

Comments: Signed:	Date:	