

Mapping Biodiversity through Remote Sensing

Learning Objectives

- Understand key concepts in biodiversity and remote sensing
- Develop practical skills in ecosystem mapping
- Apply scientific observation techniques
- Analyze environmental data patterns

Section 1: Understanding Key Terms (15 minutes)

Work with a partner to complete these definitions. Use your textbook or provided resources to ensure accuracy.

1. Define these essential terms:

Biodiversity	
Ecosystem	
Remote Sensing	
Habitat	

Ecosystem Relationships (10 minutes)

Draw lines to connect each ecosystem role with its correct description. Then provide an example of each from your local environment.

Role	Description	Local Example
Producer	Creates food through photosynthesis	
Consumer		

Decomposer	Eats other organisms for energy	
	Breaks down organic matter	

Section 2. Ecosystem Mapping Activity (50 minutes)
You will create a detailed map of a designated area in your school environment. This activity combines observation skills with scientific recording techniques.
Step 1: Planning Your Survey
Survey Area Location:

Step 2: Create Your Map

Weather Conditions:

Approximate Size (in meters):

Draw vour ecosystem mar	here.	Include a	legend and	d label :	all importar	nt features.

Step 3: Biodiversity Recording

Type	Count	Description
Plant Species		
Insect Species		
Other Wildlife		

Species Type	Number Counted	Area (m²)	Density (per m²)
ity Formula: Populary	ation Density = Number of Indi	ividuals ÷ Area	
- vour calculations no	ere		
, 5 5.2 5 4.5 4 4.5 16 16			
, 5 3.2 5 4.15 4.14 4.15 11.5			

Number (n)

 $(n/N)^2$

n/N

Section 3: Data Analysis and Interpretation (45 minutes)

where: n = number of individuals of each species

N = total number of all individuals

Species

Section 4: Remote Sensing Technology (30 minutes)

Explore how remote sensing technologies help us understand biodiversity patterns.

Remote Sensing Tools

Technology	Purpose	Applications
Satellite Imagery		
LiDAR		
Thermal Imaging		

Satellite Image Analysis

I	Using	the	provided	satellite	image.	identify	and	labe	l:
-	5		promaca	Succince		i de Circii j	****	1000	

- Different vegetation types
- Water bodies
- Human infrastructure
- Potential wildlife corridors

Draw and label your analysis here

Section 5: Conservation Planning (40 minutes)

Develop a conservation plan based on your ecosystem analysis.

Threat Assessment

Identified Threat	Impact Level (1-5)	Proposed Solution

Conservation Action Plan

nort-term	Goals (1-6 months):		
1.			
2.			
3.			
ong-term	Goals (1-5 years):		
ong-term	Goals (1-5 years):		
	Goals (1-5 years):		

. What 1	atterns did you observe in the distribution of species across your mapped area?
2. How n	night seasonal changes affect the biodiversity in your mapped area?
. What l	numan activities might impact the ecosystem you studied?
Takea	ways
⁷ Takea	ways
	ways nain things you learned from this mapping activity:
st three:	
st three:	
st three:	