

Computer System Architecture Activity Sheet

Learning Objectives

- · Identify and understand core computer system components
- Analyze technical specifications and their impact on performance
- Develop troubleshooting skills for common hardware issues
- Understand component compatibility and system optimization

Part 1: Component Identification Challenge (20 minutes)

Working in pairs, complete the following activities:

1.1 Component Matching

Draw lines to connect each component with its correct function:

CPU	Temporary data storage for quick access
RAM	 Processes instructions and performs calculations
Motherboard	 Connects all components and facilitates communication
Power Supply	Converts AC to DC power for components

1.2 Component Diagram Analysis

Study the simplified motherboard diagram below and label the following components:

[Diagram space - Label the following]

- 1. CPU Socket
- 2. RAM Slots
- 3. PCIe Slots
- 4. SATA Ports

5. Power Connectors

Part 2: System Specification Analysis (25 minutes)

Analyze the following system configurations and answer the questions below:

System Comparison Table

Component	System A	System B
CPU	Intel Core i7-12700K	AMD Ryzen 9 5900X
RAM	32GB DDR4-3600	16GB DDR4-3200
Storage	1TB NVMe SSD	2TB SATA SSD
Power Supply	850W Gold	750W Bronze

Analysis Questions:

- 1. Which system would be better for video editing? Explain your reasoning:
- 2. Calculate the memory bandwidth for System A:
- 3. Identify potential bottlenecks in System B:

Part 3: Troubleshooting Scenarios (30 minutes)

Work in groups of 3-4 to analyze these common computer problems:

Scenario 1: System Won't Boot

A computer fails to start after a RAM upgrade. Create a troubleshooting flowchart:

- 1. List possible causes:
- 2. Outline diagnostic steps:
- 3. Propose solutions:

Scenario 2: Random Shutdowns

Complete the diagnostic checklist:

	Observations	Action Required
Temperature Readings		
Power Supply Test		
Event Log Analysis		

Part 4: Performance Optimization Project (45 minutes)

Complete this comprehensive system analysis and optimization exercise:

4.1 Baseline Performance Assessment

Record current system metrics in the table below:

Metric	Current Value	Target Value	Action Required
Boot Time		< 30 seconds	
Memory Usage		< 70%	
CPU Temperature		< 75°C	

4.2 Optimization Strategy

Develop a comprehensive optimization plan:

Software Optimization

- Startup programs review
- Driver updates
- OS optimization
- Background processes

Hardware Optimization

- Cooling system check
- Cable management
- Dust removal
- Thermal paste review

5.1 CPU Architecture Analysis

Complete the following diagram and analysis of modern CPU architecture:

Component	Function	Impact on Performance
L1 Cache		
L2 Cache		
Branch Predictor		

5.2 Memory Hierarchy Challenge

Design a memory system optimization strategy:

- 1. Calculate effective memory access time:
 - EMAT = (Hit Rate × Hit Time) + (Miss Rate × Miss Penalty)
- 2. Propose optimization techniques:

6.1 Build Configuration Planning

Create a complete system build plan with the following budget constraints:

Component	Budget Range	Selected Model	Justification
CPU	\$200-300		
Motherboard	\$150-200		
RAM	\$100-150		

6.2 Compatibility Analysis

Complete the compatibility checklist:

- □ CPU socket matches motherboard
- \square RAM type and speed supported
- Dever supply wattage sufficient
- □ Case size accommodates components
- □ Cooling solution compatible

Part 7: Final Assessment and Documentation (35 minutes)

7.1 System Documentation Template

Complete the following documentation for your system build:

System Overview

Build Purpose:	
Target Performance Metrics:	
Special Considerations:	

Performance Benchmarks

CPU Performance Test:

Memory Speed Test:

Storage Performance:

Maintenance Schedule

Task	Frequency	Notes
Physical Cleaning		
Driver Updates		
Performance Check		

Assessment Criteria

Criteria	Mark
Component identification accuracy	/10
System analysis depth and reasoning	/15
Troubleshooting methodology	/15
Group participation and collaboration	/10
Total	/50

Teacher Notes

Additional Resources Required:

- Computer component diagrams
- System specification sheets
- Troubleshooting guides

Extension Activities:

- Research and compare current market prices for components
- Design an optimal system build within a specified budget
- Create a maintenance schedule for a computer system