Introduction to Building Insulation

Topic: Building Insulation Materials and Thermal Properties Grade Level: Technical High School (Ages 16-18) Duration: 90 minutes (Two 45-minute sessions) Standards: Romanian Technical Construction Curriculum, C107/2005 Language: Bilingual instruction (Romanian/English technical terms)

\checkmark Insulation material samples	✓ PPE sets (gloves, masks, goggles)
\checkmark Infrared thermometer	✓ Thermal imaging camera
✓ Calculation worksheets	\checkmark Technical documentation forms
✓ Digital projector	✓ Romanian construction standards reference

Classroom Setup:

- Arrange laboratory tables in groups of 4
- Set up material testing stations
- Ensure proper ventilation
- · Post safety protocols in Romanian and English
- Prepare PPE distribution station

Opening Phase (0-5 minutes)

5 minutes

[Display various insulation materials on front demonstration table]

"Bună ziua, class! Today we're exploring building insulation materials - the hidden heroes that keep our buildings comfortable and energy-efficient. Before we handle any materials, let's review our safety protocols."

Safety Briefing Checklist:

- Demonstrate proper glove fitting technique
- Show correct mask placement and seal check
- Review goggle cleaning and fogging prevention
- Identify emergency shower and eyewash station locations
- Review chemical exposure response procedures

[Pass around sealed samples of different insulation materials] "As these samples circulate, notice their temperature. Some feel cool, others warm - why do you think that is?"

Thermal Principles Review (5-10 minutes)

5 minutes

Key Concepts to Review:

- Heat always moves from hot to cold
- Three heat transfer mechanisms
- Thermal conductivity (λ) basics
- R-value introduction

"Let's quickly review how heat moves through materials. Can anyone name the three heat transfer mechanisms?" [Expected: "Conduction, Convection, Radiation"]

Common Misconceptions to Address:

- Insulation "keeps cold out" (it actually reduces heat transfer)
- Thicker always means better (depends on material properties)
- All foams have same properties (significant variations exist)

Material Classification (10-15 minutes)

5 minutes

"Let's examine our main insulation categories. Each has unique properties that make it suitable for specific applications."

Material Categories:

Material Type	Romanian Term	λ Value (W/mK)
Mineral Wool	Vată minerală	0.035-0.045
Expanded Polystyrene	Polistiren expandat	0.031-0.038
Extruded Polystyrene	Polistiren extrudat	0.029-0.036

Differentiation Strategies:

- Provide bilingual material cards
- Use color coding for material types
- Offer hands-on samples for tactile learners
- Include visual property charts

Practical Applications (15-30 minutes)

15 minutes Thermal Imaging Demonstration:

- 1. Set up insulation panels with different materials
- 2. Apply heat source to one side
- 3. Use thermal camera to observe heat transfer

4. Record temperature differences

5. Calculate thermal resistance

Student Laboratory Exercise:

Material Sample	Initial Temp (°C)	Final Temp (°C)	ΔΤ	R-Value
Sample A				

Technical Calculations (30-45 minutes)

Key Formulas:

- $R = d/\lambda$ (where d is thickness in meters)
- $U = 1/R_{total}$
- $Q = U \times A \times \Delta T$

Sample Problem:

Calculate the total thermal resistance for a wall assembly:

- Interior plaster (2cm, $\lambda = 0.8 \text{ W/mK}$)
- Brick (25cm, $\lambda = 0.72$ W/mK)
- EPS insulation (10cm, $\lambda = 0.035$ W/mK)
- Exterior render (1.5cm, $\lambda = 0.87 \text{ W/mK}$)

Solution:

- 1. $R_{plaster} = 0.02/0.8 = 0.025 \text{ m}^2\text{K/W}$
- 2. $R_{brick} = 0.25/0.72 = 0.347 \text{ m}^2\text{K/W}$
- 3. $R_{EPS} = 0.10/0.035 = 2.857 \text{ m}^2\text{K/W}$
- 4. $R_{render} = 0.015/0.87 = 0.017 \text{ m}^2\text{K/W}$
- 5. $R_{total} = 3.246 \text{ m}^2\text{K/W}$

Romanian Building Standards (45-60 minutes)

C107/2005 Requirements:

Climate Zone	Min. R-Value (m ² K/W)	Max. U-Value (W/m ² K)
Zone I (Constanța)	1.8	0.56
Zone II (București)	2.0	0.50
Zone III (Brașov)	2.4	0.42

Documentation Requirements:

- Energy Performance Certificate calculations
- Material certification documents
- Installation method statements
- Thermal bridge analysis
- Condensation risk assessment

Installation Techniques (60-75 minutes)

Critical Installation Points:

- Surface preparation requirements
- Proper adhesive application patterns
- Mechanical fastener spacing
- Joint treatment methods
- Weather barrier integration

Installation Errors to Avoid:

Error	Consequence	Prevention	
Gaps between boards	Thermal bridging	Use proper cutting tools	
Insufficient fasteners	Material detachment	Follow pattern guide	
Poor surface prep	Adhesion failure	Clean and prime surface	

Quality Control and Testing (75-90 minutes)

Field Quality Tests:

- 1. Pull-off adhesion testing
- 2. Thermal imaging inspection
- 3. Moisture content verification
- 4. Surface alignment checking
- 5. Joint inspection

Required Documentation:

- Material delivery receipts
- Installation photos
- Test results
- Warranty documentation
- Maintenance instructions

Performance Evaluation:

Criterion	Pass Requirement	Test Method
Adhesion	>0.15 MPa	Pull-off test
Flatness	±4mm/2m	Straightedge
Thermal bridges	None visible	IR camera

Practical Application & Assessment

Learning Outcomes Assessment

Competency	Basic	Proficient	Advanced
Material Identification	Can name basic types	Can classify and describe properties	Can recommend applications
Calculations	Basic R-value calculation	Complex thermal calculations	Advanced system analysis

Take-Home Project

Students will:

- Document insulation types in their own homesCalculate theoretical heat loss
- Propose improvements with cost analysis
- Present findings in both Romanian and English