PLANTBridge Reverse Engineering and 3D Modeling STEM Project

Subject Area: STEM/Engineering Unit Title: Reverse Engineering and 3D Modeling Grade Level: 8th Grade (14 years) Lesson Number: 1-4 of 4 Duration: 4 Class Periods (45 mins each) Teacher: Engineering Instructor Room: STEM Laboratory Required Software: Tinkercad

Curriculum Standards Alignment

Content Standards:

- ETS1-1: Define the criteria and constraints of a design problem
- ETS1-2: Evaluate competing design solutions
- ETS1-3: Analyze data from tests to determine similarities and differences among solutions
- ETS1-4: Develop a model to generate data for iterative testing and modification

Skills Standards:

- 3D modeling and spatial reasoning
- Technical measurement and analysis
- Engineering design process
- Digital fabrication techniques

Cross-Curricular Links:

- Mathematics: Geometry, measurement, and scaling
- Physics: Forces, loads, and structural mechanics
- Technology: CAD software and 3D printing

Essential Questions & Learning Objectives

Essential Questions:

- How can reverse engineering help us understand complex structures?
- What role does precision measurement play in engineering?
- How do different bridge designs distribute loads?
- How can 3D modeling improve engineering design processes?

Learning Objectives:

- Students will analyze bridge structural components through reverse engineering
- Students will accurately measure and document bridge components
- Students will create detailed 3D models using Tinkercad
- Students will evaluate structural integrity through testing

Day 1: Introduction and Bridge Analysis

Pre-Class Setup (15 mins)

- Prepare bridge model specimens
- Set up measurement stations with digital calipers
- Configure computer workstations with Tinkercad
- Distribute technical documentation templates

Introduction (20 mins)

- · Present different bridge types and their characteristics
- Demonstrate structural analysis techniques
- Explain reverse engineering methodology
- Review safety protocols for equipment use

Teaching Strategies:

- Visual presentations of bridge types
- Physical demonstrations of structural principles
- Interactive Q&A sessions
- Hands-on exploration of sample models

Guided Practice (45 mins)

- Demonstrate proper measurement techniques
- Guide students through initial bridge analysis
- Practice documentation methods
- Begin structural component identification

Assessment Methods:

- Observation of measurement technique
- Review of initial documentation
- Verbal questioning for understanding
- Group discussion of findings

Measurement and Documentation Protocols

Required Tools:

- Digital calipers (0.01mm precision)
- Angle measurement tools
- Documentation templates
- Photography equipment
- Sketching materials

Measurement Procedures:

- Primary structural elements
 - Length, width, and thickness measurements
 - Angular relationships
 - Cross-sectional profiles
- Connection points
 - Joint geometry
 - Fastener specifications
 - Assembly relationships
- Support structures
 - $\circ~$ Base dimensions
 - Support angles
 - Reinforcement details

Documentation Requirements:

- Detailed technical drawings
- Measurement data tables
- Assembly sequence diagrams
- Component relationship maps
- Material specifications

3D Modeling Implementation

Day 2-3: 3D Modeling in Tinkercad

Software Introduction (30 mins)

- Tinkercad interface overview
- Basic shape manipulation
- Measurement tools in software
- · Group and alignment functions

Tutorial Sequence:

- Navigation controls demonstration
- Shape creation and modification
- Dimension input methods
- Practice exercises

Component Modeling (2 hours)

- Create individual bridge components
- Apply precise measurements
- Model connection points
- Generate support structures

Assembly Process (1 hour)

- Component alignment
- Joint creation
- Structure verification
- Final adjustments

Modeling Guidelines

Quality Standards:

- Dimensional accuracy within 0.1mm
- Proper component alignment
- Correct geometric relationships
- Appropriate use of symmetry
- Clear component labeling

Day 4: Testing and Evaluation

Assessment Criteria:

- Model Accuracy (30%)
 - Dimensional precision
 - Component relationships
 - Structural integrity
- Documentation Quality (25%)
 - Completeness of measurements
 - Technical drawing accuracy
 - Assembly documentation
- Process Understanding (25%)
 - Reverse engineering methodology
 - Modeling technique
 - Problem-solving approach
- Presentation (20%)
 - Technical communication
 - Project organization
 - Final demonstration

Evaluation Methods:

- Digital model review
- Documentation portfolio assessment
- · Peer review sessions
- Final presentation evaluation

Teaching Resources

Digital Resources:

- Tinkercad tutorial videos
- Bridge design presentations
- Measurement technique guides
- Documentation templates

Physical Materials:

- Bridge model specimens
- Measurement tools
- Safety equipment
- Reference materials

Support Documents:

- Lesson plans and timelines
- Assessment rubrics
- Technical specifications
- Troubleshooting guides

Additional Support:

- Online help resources
- Technical support contacts
- Engineering reference materials
- Professional development resources