

Teacher Preparation Lesson Plan

Subject Area: Mathematics

Unit Title: Exploring Relations and Functions

Grade Level: Class XII **Lesson Number:** 1 of 10

Duration: 60 minutes
Date: 2023-02-20
Teacher: John Doe
Room: Mathematics Lab

Curriculum Standards Alignment

Content Standards:

- Define and explain the concept of injective, surjective, and bijective functions.
- Identify and distinguish between different types of functions, including linear, quadratic, and polynomial functions.
- Apply the concepts of functions to real-life situations, such as population growth, financial transactions, and scientific experiments.

Skills Standards:

- Analyze and interpret mathematical models and graphs.
- Use mathematical language and notation to communicate ideas and solutions.
- Apply mathematical concepts to solve problems in various contexts.

Cross-Curricular Links:

- Science: population growth, scientific experiments
- · Technology: graphing calculators, computer simulations
- Engineering: mathematical modeling, problem-solving
- Mathematics: algebra, calculus, statistics

Essential Questions & Big Ideas

Essential Ouestions:

- What are the different types of functions, and how are they used in real-life situations?
- How can mathematical models and graphs be used to analyze and interpret data?
- What are the key concepts and skills required to apply mathematical concepts to solve problems in various contexts?

Enduring Understandings:

Page 0 of 7

- Functions are a fundamental concept in mathematics, and understanding their properties and applications is crucial for problem-solving.
- Mathematical models and graphs can be used to analyze and interpret data, and to make informed decisions.
- Mathematical concepts and skills can be applied to solve problems in various contexts, including science, technology, engineering, and mathematics.

Student Context Analysis

Class Profile:

Total Students: 30

Learning Styles Distribution:

Visual: 40%

• ELL Students: 5 IEP/504 Plans: 3Gifted: 5

Auditory: 30%Kinesthetic: 30%

Pre-Lesson Preparation

Room Setup:

- · Arrange desks in pairs
- · Set up whiteboard and markers
- · Prepare graphing calculators and computers

Technology Needs:

- · Graphing calculators
- · Computers with internet access
- · Whiteboard and markers

Materials Preparation:

- Printed copies of the lesson plan
- · Graph paper and pencils
- · Calculators and batteries

Safety Considerations:

- Ensure students handle calculators and computers with care
- · Monitor students during group work
- · Provide necessary accommodations for students with disabilities

Detailed Lesson Flow

Pre-Class Setup (15 mins before)

- · Set up room and technology
- Prepare materials and handouts
- · Review lesson plan and objectives

Bell Work / Entry Task (5-7 mins)

- Review previous lesson and objectives
- · Introduce new vocabulary and concepts
- · Ask students to share any questions or concerns

Opening/Hook (10 mins)

Page 0 of 7

- Introduce the concept of functions and their importance
- Use real-life examples to illustrate the concept
- Ask students to share their prior knowledge and experiences

Engagement Strategies:

- Think-pair-share
- Group discussion
- Hands-on activities

Direct Instruction (20-25 mins)

• Explain the different types of functions (injective, surjective, bijective)

- Use graphs and diagrams to illustrate the properties of each type
- Provide examples and non-examples of each type

Checking for Understanding:

- Formative assessments
- · Quizzes and class discussions
- One-on-one support

Guided Practice (25-30 mins)

- Provide students with examples and non-examples of each type of function
- Ask students to work in pairs to identify and classify the functions
- · Circulate around the room to provide support and feedback

Scaffolding Strategies:

- · Graphic organizers
- Concept maps
- Think-aloud protocols

Independent Practice (20-25 mins)

- · Provide students with a set of problems to solve on their own
- Ask students to apply the concepts of functions to real-life situations
- · Allow students to use calculators and computers to check their work

Closure (10 mins)

- Review the key concepts and objectives of the lesson
- · Ask students to reflect on what they learned and what they would like to learn more about
- · Provide feedback and encouragement

Differentiation & Support Strategies

For Struggling Learners:

- · Provide extra support and scaffolding
- Use visual aids and graphic organizers
- Offer one-on-one support and feedback

For Advanced Learners:

- Provide challenging problems and extensions
- Encourage independent research and projects
- Offer opportunities for leadership and peer teaching

ELL Support Strategies:

- Provide visual aids and graphic organizers
- Use simple language and definitions
- Offer one-on-one support and feedback

Social-Emotional Learning Integration:

- Encourage self-awareness and self-regulation
- Model and teach social skills and empathy
- Provide opportunities for reflection and self-assessment

Assessment & Feedback Plan

Formative Assessment Strategies:

- · Quizzes and class discussions
- One-on-one support and feedback
- · Graphic organizers and concept maps

Success Criteria:

- Students can define and explain the concept of injective, surjective, and bijective functions.
- Students can identify and distinguish between different types of functions.
- Students can apply the concepts of functions to real-life situations.

Feedback Methods:

- Verbal feedback
- Written feedback
- · Peer feedback

Homework & Extension Activities

Homework Assignment:

Complete the set of problems provided in class, and apply the concepts of functions to a real-life situation.

Extension Activities:

- Research and create a presentation on a real-life application of functions.
- Design and create a function to model a real-life situation.
- Write a reflective essay on the importance of functions in mathematics and real-life applications.

Parent/Guardian Connection:

Encourage parents/guardians to ask their child about the lesson and what they learned, and to provide feedback and support.

Teacher Reflection Space

Pre-Lesson Reflection:

- What challenges do I anticipate?
- Which students might need extra support?
- What backup plans should I have ready?

Post-Lesson Reflection:

- What went well?
- What would I change?
- Next steps for instruction?

What are Functions?

A function is a relation between a set of inputs (called the domain) and a set of possible outputs (called the range). It assigns to each input exactly one output.

Functions can be represented in various ways, including graphs, tables, and equations.

Types of Functions

Injective Functions:

- A function is injective if each output value corresponds to exactly one input value.
- Example: $f(x) = x^2$ is not injective, but f(x) = 2x is injective.

Surjective Functions:

- A function is surjective if every output value in the range is actually reached by the function.
- Example: $f(x) = x^2$ is not surjective, but f(x) = x is surjective.

Bijective Functions:

- A function is bijective if it is both injective and surjective.
- Example: f(x) = 2x is bijective.

Domain and Range

The domain of a function is the set of all possible input values.

The range of a function is the set of all possible output values.

Example: The domain of $f(x) = x^2$ is all real numbers, and the range is all non-negative real numbers.

Composition of Functions

The composition of two functions f and g is a new function that takes an input value, applies g to it, and then applies f to the result.

Example: $(f \circ g)(x) = f(g(x))$

Real-Life Applications of Functions

Population Growth

Functions can be used to model population growth, taking into account factors such as birth and death rates, and migration.

Example: The logistic function can be used to model population growth, where the population grows rapidly at first, but then levels off as it approaches the carrying capacity.

Financial Transactions

Functions can be used to model financial transactions, such as compound interest and investments.

Example: The exponential function can be used to model compound interest, where the interest earned is added to the principal, and then the interest is earned on the new principal.

Summary

In this lesson, we explored the concept of functions, including the different types of functions and their properties.

We also examined real-life applications of functions, including population growth and financial transactions.

Assessment

Students will be assessed on their understanding of the concept of functions and their properties.

Students will also be assessed on their ability to apply the concepts of functions to real-life situations.

Extension

Students can research and create a presentation on a real-life application of functions.

Students can design and create a function to model a real-life situation.