

Teaching Script: Insulation Science and Installation

Topic: Insulation Science: Environmental Impact and Installation
Grade Level: Technical High School (Age 14)
Duration: 45 minutes
Language: Romanian/English Technical Terms
Standards Alignment: Romanian Technical Education Framework
Learning Objectives:

- Demonstrate proper insulation installation techniques
- Calculate thermal resistance values using Romanian standards
- Evaluate environmental impact of insulation materials
- · Apply safety protocols in handling construction materials

✓ Mineral wool samples	✓ EPS/XPS panels	✓ Thermal imaging camera
✓ Safety equipment sets	\checkmark Wall section models	✓ Calculation worksheets
✓ Technical documentation	✓ Temperature sensors	

Pre-Lesson Safety Briefing (5 mins)

[Begin with safety demonstration]

"Before we handle any insulation materials, safety is our top priority. Let's review the essential protective equipment and procedures."

Safety Equipment Demonstration:

- Proper fitting of respiratory masks (FFP2 rating)
- Correct glove usage for different materials
- Eye protection requirements

• Protective clothing guidelines

Safety Emphasis Points:

- Demonstrate proper mask seal check
- Show correct glove removal technique
- Explain material handling zones
- Review emergency procedures

[Guide students through safety equipment check]

Material Properties Introduction (5-10 mins)

"Let's examine the three main insulation types used in Romanian construction. Each has unique properties that make it suitable for specific applications."

Material Analysis Sequence:

- 1. Mineral Wool
 - λ-value: 0.035-0.040 W/mK
 - Fire resistance: A1 class
 - Sound insulation: 45-50 dB
- 2. Expanded Polystyrene (EPS)
 - λ-value: 0.031-0.038 W/mK
 - Compression strength: 70-100 kPa
 - Water absorption: < 5%
- 3. Extruded Polystyrene (XPS)
 - λ-value: 0.029-0.036 W/mK
 - Compression strength: 200-700 kPa
 - Water absorption: < 0.7%

Learning Support:

- Provide material property cards in Romanian/English
- Use color coding for different properties
- Include tactile samples for handling
- Display comparative charts

[Set up thermal imaging demonstration]

"Watch what happens when we examine this wall section with our thermal camera. The colors will show us where heat is escaping."

Thermal Bridge Identification:

- Geometric thermal bridges
 - Corner junctions
 - Wall-roof connections
 - Window reveals
- Structural thermal bridges
 - Concrete columns
 - Floor slabs
 - Steel connections

Demonstration Tips:

- Use contrasting temperature settings
- Show both good and poor examples
- Allow students to operate camera
- Record findings in technical log

Common Misconceptions:

- Thicker always means better insulation
- Air gaps always improve performance
- Moisture barriers are optional

Installation Techniques (15-20 mins)

"Proper installation is critical for insulation performance. Let's examine the key steps and common errors to avoid."

Installation Sequence:

- 1. Surface Preparation
 - Clean substrate
 - Check flatness

- Mark service locations
- 2. Adhesive Application
 - Perimeter-bead method
 - Coverage requirements
 - Temperature conditions
- 3. Panel Placement
 - Staggered joints
 - Corner treatment
 - Gap filling

Advanced Techniques:

- Multiple layer applications
- Complex junction details
- Mechanical fixing calculations

Thermal Calculations Workshop (20 mins)

"Now we'll practice calculating thermal resistance values using Romanian building standards. These calculations are essential for compliance certification."

Sample Calculation:

R-value = d/λ (m²K/W) Where:

- d = material thickness (m)
- λ = thermal conductivity (W/mK)

Example: Calculate total R-value for:

- 200mm mineral wool ($\lambda = 0.037$)
- 100mm EPS (λ = 0.033)
- Existing wall structure (R = 0.5)

 $R_1 = 0.200/0.037 = 5.41 \text{ m}^2\text{K/W}$ $R_2 = 0.100/0.033 = 3.03 \text{ m}^2\text{K/W}$ $R \text{ total} = 5.41 + 3.03 + 0.5 = 8.94 \text{ m}^2\text{K/W}$ **Practice Problems:**

- 1. Multi-layer wall assembly calculations
- 2. Thermal bridge factor inclusion
- 3. Cost-effectiveness analysis

"Understanding the environmental impact of insulation materials is crucial for sustainable construction practices."

Material	Embodied Energy (MJ/kg)	CO ₂ Footprint (kg CO ₂ /kg)	Recyclability
Mineral Wool	16.6	1.20	High
EPS	88.6	3.29	Medium
XPS	95.4	3.48	Medium

"Quality control is essential for ensuring insulation performance meets specifications. Let's review the key inspection points."

Visual Inspection Points:

- Panel alignment and joint quality
 - Maximum gap tolerance: 2mm
 - Joint stagger pattern: minimum 200mm
 - Corner interlock verification
- Mechanical fixing pattern
 - Edge distance: 50-100mm
 - Fixing density: 6-8/m²
 - Washer seating depth
- Surface preparation quality
 - Substrate cleanliness
 - Primer application
 - Moisture content verification

Field Testing Methods:

- 1. Pull-out strength tests
 - Minimum value: 0.15 kN
 - Test frequency: 1 per 50m²
- 2. Thermal imaging survey
 - Temperature differential: >10°C
 - Coverage pattern: 100% façade
- 3. Moisture penetration tests
 - Test method: spray bar
 - Duration: 1 hour

Troubleshooting Guide (15 mins)

Common Issues and Solutions:

Problem	Cause	Solution
Delamination	Poor adhesive coverage	Remove and reapply with correct pattern
Thermal bridging	Inadequate edge insulation	Install additional edge strips
Surface condensation	Incorrect vapor barrier	Add vapor control layer

"Proper documentation ensures quality control and provides evidence of compliance with building regulations."

Required Documentation:

- Installation Records
 - Material batch numbers
 - Installation dates
 - Weather conditions
 - Installer certification
- Test Results
 - Pull-out values
 - Thermal imaging reports
 - Moisture readings
- Compliance Certificates
 - Material conformity
 - System warranty
 - Insurance documentation

Performance Evaluation:

- 1. Thermal performance
 - U-value achievement
 - Thermal bridge elimination
- 2. Installation quality
 - Surface finish
 - Joint alignment
- 3. System integrity
 - Weather resistance
 - Structural stability

Hands-On Exercise (30 mins)

Group Activity:

- 1. Divide into teams of 3
- 2. Each team receives:
 - 1m² wall section
 - Insulation materials
 - Installation tools
 - Documentation forms
- 3. Complete installation following protocol

- 4. Perform quality checks
- 5. Document findings
- 6. Present results to class

"Let's review what we've learned today about insulation installation."

Learning Verification:

- Can identify appropriate safety equipment
- Understands thermal bridge concepts
- Can calculate R-values correctly □
- Demonstrates proper installation technique

Extended Learning:

Complete the thermal calculation worksheet for three different wall assemblies using the Romanian building code requirements.

Next Session:

We will explore advanced installation techniques for complex architectural details.

Document Reference: INS-2024-001

Last Updated: January 2024

© 2024 Technical Education Department