| Student Name: Class: Due Date: | |--| | | | Introduction to Ultrasonic Sensors | | | | Essential Understanding: Ultrasonic sensors are a type of non-contact sensor that uses high-frequency sound waves to detect and measure objects. They are commonly used in robotics, automotive, and medical applications. | | | | Complete these concept checks: 1. What is the principle of ultrasonic sensors? | | | | 2. What are some common applications of ultrasonic sensors? | | | ## How Ultrasonic Sensors Work ### **Ultrasonic Sensor Components:** - Transmitter: emits high-frequency sound waves - Receiver: detects reflected sound waves # **Working Principle:** - The transmitter emits a high-frequency sound wave. - The sound wave bounces back from an object and is detected by the receiver. - The time it takes for the sound wave to bounce back is measured and used to calculate the distance of the object. # Connecting Ultrasonic Sensors to Arduino ## **Connection Steps:** - 1. Connect the VCC pin to 5V on the Arduino board. - 2. Connect the GND pin to GND on the Arduino board. - 3. Connect the TRIG pin to a digital pin on the Arduino board. | Complete these concept checks: | |--| | 1. What is the purpose of connecting the VCC pin to 5V on the Arduino board? | | | | | | | | 2. What is the purpose of connecting the TRIG pin to a digital pin on the Arduino board? | | | | | | | | | # Programming Ultrasonic Sensors with Arduino ### **Programming Steps:** - 1. Use the pulseln() function to measure the time it takes for the sound wave to bounce back from an object. - 2. Calculate the distance of the object using the measured time. # Activities and Questions | Complete these activities and questions: | |--| | 1. Design a simple obstacle avoidance system using an ultrasonic sensor and Arduino. | | | | | | | | 2. Write a simple Arduino program to read sensor data from an ultrasonic sensor. | | | | | | | | | # Project: Design an Obstacle Avoidance System | Project Requirements: | |--| | Design a basic obstacle avoidance system using an ultrasonic sensor and Arduino. Consider the type of robot to use, how to connect the ultrasonic sensor to the Arduino board, and how to implement the obstacle avoidance algorithm. | | | | | ### Conclusion ### **Summary:** - Ultrasonic sensors are a type of non-contact sensor that uses high-frequency sound waves to detect and measure objects. - They are commonly used in robotics, automotive, and medical applications. - The working principle of ultrasonic sensors involves emitting a high-frequency sound wave, detecting the reflected sound wave, and measuring the time it takes for the sound wave to bounce back. # Glossary ### **Key Terms:** - Ultrasonic sensor: a type of non-contact sensor that uses high-frequency sound waves to detect and measure objects. - Arduino: a microcontroller platform used for building interactive electronic projects. - PulseIn(): a function used to measure the time it takes for a sound wave to bounce back from an object. # References # References: - Arduino Official Website: https://www.arduino.cc/ - Ultrasonic Sensor Datasheet: https://www.example.com/ultrasonic-sensor-datasheet.pdf #### **Answer Key:** - 1. The principle of ultrasonic sensors is based on the time-of-flight method, where the sensor emits a high-frequency sound wave and measures the time it takes for the wave to bounce back from an object. - 2. To connect an ultrasonic sensor to an Arduino board, you need to connect the VCC pin to 5V, the GND pin to GND, and the TRIG pin to a digital pin on the Arduino board. - 3. A simple Arduino program to read sensor data from an ultrasonic sensor can be written using the pulseln() function. - 4. Some common applications of ultrasonic sensors include robotics, automotive, and medical applications. - 5. A simple obstacle avoidance system using an ultrasonic sensor and Arduino can be designed by connecting the sensor to the Arduino board, writing a program to read sensor data, and implementing an obstacle avoidance algorithm.