

Teacher Preparation Lesson Plan

Subject Area: Science - Nature of Matter **Unit Title:** Heat and Temperature Experiment

Grade Level: 5th Grade **Lesson Number:** 1 of 8

Duration: 8 Weeks (45-minute sessions)

Date: Ongoing

Teacher: To be assigned **Room:** Science Laboratory

Curriculum Standards Alignment

Content Standards:

- PS3.1 Understand and explain that energy cannot be created or destroyed but can be transferred from one form to another
- PS3.2 Measure and graph quantities to provide evidence that the transfer of thermal energy occurs between objects
- PS3.3 Apply scientific principles to design, construct, and test a device that minimizes or maximizes thermal energy transfer

Skills Standards:

- Planning and carrying out investigations to answer questions or test solutions
- · Analyzing and interpreting data to derive meaning
- · Using mathematics and computational thinking to analyze data
- · Constructing explanations and designing solutions based on evidence

Cross-Curricular Links:

- Mathematics: Data collection, graphing, and analysis
- · Technology: Digital tools and simulations
- Language Arts: Scientific writing and communication

Essential Questions & Big Ideas

Essential Questions:

- How does heat energy transfer between objects of different temperatures?
- What is the relationship between heat and temperature?
- How can we measure and track temperature changes in a controlled experiment?
- · Why is understanding heat transfer important in our daily lives?

Enduring Understandings:

- Heat is a form of energy that transfers from warmer to cooler objects
- Temperature is a measure of the average kinetic energy of particles in matter
- · Heat transfer continues until thermal equilibrium is reached
- Scientific investigations require careful measurement and systematic observation

Pre-Lesson Preparation

Room Setup:

- Arrange laboratory tables into 6 group stations
- · Set up safety equipment station with goggles, gloves, and first aid kit
- Prepare digital projection system for PhET simulation demonstration
- Position thermometer storage and calibration station
- · Set up hot water heating station with electric kettle and cooling area

Technology Needs:

- · Computer with internet access for PhET simulation
- Digital projector and screen
- 6 tablets/laptops for student group data collection
- Digital thermometers (one per group)
- Document camera for demonstration purposes

Materials Preparation (per group):

- 2 graduated cylinders (250ml capacity)
- 2 thermometers (digital and analog)
- · Hot water heating system
- · Ice bath for cold water
- · Data recording sheets and clipboards
- Safety goggles and heat-resistant gloves
- · Stopwatch or timer
- · Graph paper and plotting materials

Safety Considerations

Critical Safety Protocols:

- Establish clear procedures for handling hot water (maximum 50°C)
- · Require safety goggles and heat-resistant gloves during experiments
- · Review emergency procedures and location of safety equipment
- · Establish clear spillage cleanup protocols
- Maintain clear pathways between experimental stations
- · Post visible safety reminders and emergency contact information

Detailed Lesson Flow

Pre-Class Setup (15 mins before)

- Heat water to exactly 50°C
- Prepare ice bath for cold water (10°C)
- Distribute materials to group stations
- · Test all digital thermometers
- · Load PhET simulation on devices

Bell Work / Entry Task (5-7 mins)

- Students complete temperature prediction worksheet
- · Record initial thoughts about heat vs. temperature
- Review safety protocols in laboratory notebook

Opening/Hook (10 mins)

- Demonstrate dramatic temperature change using hot and cold water
- Lead discussion on everyday heat transfer examples
- · Introduce key vocabulary through visual aids

Engagement Strategies:

- Use real-time temperature readings for visual impact
- Connect to students' daily experiences
- Incorporate interactive questioning techniques

Main Activity Sequence

Direct Instruction (10 mins)

- Review experimental procedure and safety guidelines
- · Demonstrate proper use of measurement tools
- Model data recording techniques
- · Explain success criteria and expectations

Guided Practice (20 mins)

- Students conduct temperature mixing experiments in groups
- Record temperature changes at 30-second intervals
- · Create real-time graphs of temperature changes
- · Document observations and initial conclusions

Differentiation Strategies:

- · Provide scaffolded data sheets for different ability levels
- Offer visual aids for experimental steps
- · Allow for digital or manual data recording options

Assessment Strategies

Formative Assessment:

- Observation of experimental technique and safety compliance
- · Quality of data collection and recording
- · Group participation and collaboration
- · Understanding of key concepts through questioning

Summative Assessment:

- · Lab report completion with data analysis
- Graph interpretation and explanation
- · Connection to real-world applications
- · Written reflection on learning outcomes

Closure and Extension Activities

Lesson Closure (5-7 mins):

- · Class discussion of experimental results
- · Compare predictions with actual outcomes
- · Address misconceptions and questions
- · Preview next lesson's activities

Extension Activities:

- · Design additional experiments with different variables
- · Create digital presentations of findings
- · Research real-world applications of heat transfer
- Develop mathematical models of temperature change

Homework/Follow-up:

- · Complete data analysis worksheets
- · Write preliminary conclusions
- Begin research for extended investigation

Resources and References

Teacher Resources:

- PhET Interactive Simulations (phet.colorado.edu)
- NSTA Safety Guidelines for Science Laboratories
- Common Core Mathematics Standards Alignment Guide
- Digital Assessment Tools and Rubrics

Student Resources:

- Online Data Collection Templates
- · Scientific Method Reference Guide
- · Laboratory Safety Manual
- Graph Creation Software Tutorial