Investigating Local Biodiversity - Student Activity Worksheet #### **Learning Objectives** - Understand and define key biodiversity concepts - Develop field investigation skills - Practice species identification and data collection - Analyze ecosystem relationships #### **Section 1: Understanding Biodiversity Basics (15 minutes)** Complete the following activities individually: #### 1. Key Terms Investigation Research and write detailed definitions for these important terms: | Term | Your Definition | Draw an Example | |--------------|-----------------|-----------------| | Biodiversity | | | | Ecosystem | | | | Habitat | | | | Species | | | #### **Biodiversity Quiz** Circle the correct answer for each question: | a) The number of plants in an area b) The variety of all living things in an area c) The number of animals in an area d) The size of organisms in an area 2. Which factor is NOT considered an abiotic factor? a) Sunlight b) Temperature c) Grass | 1. Whic | ch statement best describes biodiversity? | |---|---------|--| | a) Sunlightb) Temperaturec) Grass | 0 0 0 | b) The variety of all living things in an area c) The number of animals in an area | | b) Temperaturec) Grass | 2. Whic | ch factor is NOT considered an abiotic factor? | | O a) Soil pri | 0 0 0 | b) Temperature | # Section 2: Field Investigation Planning Complete these pre-investigation tasks: #### 1. Equipment Checklist List and explain the purpose of five essential pieces of equipment needed for a biodiversity survey: | Equipment Item | Purpose | Safety Consideration | |----------------|---------|----------------------| #### 2. Quadrat Design Activity Design and label a quadrat that could be used for sampling. Include measurements and materials needed. | [Space t | or | quad | rat | des | ign | drawi | ng] | |----------|----|------|-----|-----|-----|-------|-----| | | | | | | | | | Explain your design choices: # **Section 3: Species Identification Practice** Using the provided local species guide, complete these identification tasks: #### 1. Species Identification Chart | Species Image | Species Name | Key Features | Habitat Type | |---------------|--------------|--------------|--------------| | [Image A] | | | | | [Image B] | | | | | [Image C] | | | | # 2. Adaptation Analysis For each species identified above, describe one specific adaptation and explain how it helps the organism survive: | Species A Adaptation: | | |-----------------------|--| | Species B Adaptation: | | | Species C Adaptation: | | | | | #### **Section 4: Field Data Collection** Record your observations and measurements in the following tables: #### 1. Environmental Conditions | Factor | Measurement | Time of Day | Notes | |-----------------------|-------------|-------------|-------| | Temperature (°C) | | | | | Light Intensity (lux) | | | | | Soil Moisture (%) | | | | # 2. Species Count Data | Quadrat
Number | Species
Name | Number
Counted | Distribution
Pattern | |-------------------|-----------------|-------------------|-------------------------| | 1 | | | | | 2 | | | | | 3 | | | | # **Section 5: Data Analysis and Calculations** # 1. Calculate Species Density Species Density = Number of individuals ÷ Area of quadrat | Species | Calculation | Result (per m²) | |---------|-------------|-----------------| | | | | | | | | #### 2. Calculate Species Frequency Frequency = (Number of quadrats containing species ÷ Total number of quadrats) × 100 | Species | Calculation | Result (%) | |---------|-------------|------------| | | | | | | | | # **Section 6: Ecosystem Interactions** #### 1. Food Web Construction Using the species you observed, construct a food web in the space below: | [Space for food web diagram] | |------------------------------| | | | | | | | | | | | | | | | | # 2. Interaction Analysis | Type of Interaction | Species Involved | Description of Interaction | |---------------------|------------------|----------------------------| | Competition | | | | Predation | | | | Symbiosis | | | # Section 7: Conclusions and Recommendations | 1. Biodiversity Assessment | | | | | | |--|-------------------|-------------------------|-----------------------------------|-------------------------|-------------------------| | Based on your findings, evaluate the biodiversity of your study area: Species Richness (number of different species): Species Evenness (distribution of individuals): Overall Biodiversity Rating (Low/Medium/High): 2. Conservation Recommendations | | | | | | | | | | Suggest three specific actions to | maintain or improve bio | divorcity in this area: | | | | | | | diversity in this area. | | | | | 1. | | diversity in this area. | | | | | 1.2. | | ulversity in this area. | | | | diversity in this area. | | | | | 2. | | diversity in this area. | | | | | 3. | Impact on Results | How to Improve | | | | | 2. 3. 3. Error Analysis | | | | | |