
Advanced Bash Scripting Techniques

Learning Objectives

By the end of this worksheet, students will:

Understand advanced bash scripting concepts
Develop practical scripting skills
Learn critical safety protocols in script development
Explore real-world applications of bash scripting

Bash Scripting Fundamentals: Diagnostic Challenge

Examine the following script fragments and complete the challenges:

#!/bin/bash

Basic script structure example

echo "Welcome to Bash Scripting!"

read -p "Enter your name: " username

echo "Hello, $username!"

Challenge Questions:

1. Explain the purpose of the shebang line (#!) in this script
2. Identify the command used for user input
3. Describe how variables are used in this script

[Space for your answers]

Advanced Scripting Techniques: Coding Challenge

Security Tip: Always validate and sanitize user inputs to prevent potential security vulnerabilities.

Challenge Scenario: System Disk Space Monitor

Develop a bash script that:

Checks current system disk space
Alerts if disk usage exceeds 80%
Logs system events with timestamps

#!/bin/bash

Disk Space Monitoring Script

DISK_THRESHOLD=80

CURRENT_USAGE=$(df -h / | awk '/\// {print $(NF-1)}' | sed 's/%//')

if ["$CURRENT_USAGE" -gt "$DISK_THRESHOLD"]; then

 echo "ALERT: Disk space usage is critical!" >> /var/log/disk_monitor.log

 mail -s "Disk Space Warning" admin@example.com << EOF

Disk usage has exceeded $DISK_THRESHOLD%

Current usage: $CURRENT_USAGE%

EOF

fi

Challenge Tasks:

1. Explain the purpose of each line in the script
2. Identify potential improvements for error handling
3. Suggest additional monitoring features

[Space for script analysis and improvements]

Advanced Error Handling and Debugging Techniques

Best Practice: Implement comprehensive error handling to create robust and reliable bash scripts.

#!/bin/bash

Advanced Error Handling Example

set -euo pipefail

-e: Exit immediately if a command exits with a non-zero status

-u: Treat unset variables as an error

-o pipefail: Ensure pipeline errors are captured

function error_handler() {

 echo "Error occurred in script at line $1"

 exit 1

}

trap 'error_handler $LINENO' ERR

perform_critical_operation() {

 if ! command_that_might_fail; then

 echo "Critical operation failed"

 return 1

 fi

}

main() {

 perform_critical_operation || exit 1

 echo "Script completed successfully"

}

main

Error Handling Challenge:

1. Explain the purpose of each set option (-e, -u, -o pipefail)
2. Describe how the error trap mechanism works
3. Identify potential improvements in error reporting

[Space for error handling analysis]

Advanced Scripting Patterns: Function Design

Learning Focus: Modular Script Architecture

Master advanced function design principles in bash scripting:

Create reusable and modular functions
Implement proper parameter handling
Design flexible script architectures

#!/bin/bash

Advanced Function Design Pattern

validate_input() {

 local input="$1"

 local regex="$2"

 if [[! "$input" =~ $regex]]; then

 echo "Invalid input: $input"

 return 1

 fi

 return 0

}

process_data() {

 local data_file="$1"

 local output_file="$2"

 if [[! -f "$data_file"]]; then

 echo "Error: Input file not found"

 return 1

 fi

 awk '{print $1}' "$data_file" > "$output_file"

}

main() {

 local username="$1"

 local email="$2"

 validate_input "$username" "^[a-zA-Z0-9_-]+$" || exit 1

 validate_input "$email" "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$" || exit 1

 process_data "input.txt" "output.txt"

 echo "Processing complete for $username"

}

main "$@"

Function Design Challenges:

1. Analyze the input validation mechanism

2. Explain the purpose of local variable scoping
3. Discuss error handling strategies in functions

[Space for function design analysis]

System Automation: Real-World Scripting Project

Professional Insight: Develop scripts that solve real-world system administration challenges.

Project Scenario: Automated System Backup Solution

#!/bin/bash

Comprehensive System Backup Script

BACKUP_DIR="/backup/$(date +%Y-%m-%d)"

LOG_FILE="/var/log/system_backup.log"

RETENTION_DAYS=30

create_backup_directory() {

 mkdir -p "$BACKUP_DIR"

 [[$? -eq 0]] || { echo "Failed to create backup directory"; exit 1; }

}

perform_system_backup() {

 local backup_targets=(

 "/etc"

 "/home"

 "/var/www"

)

 for target in "${backup_targets[@]}"; do

 tar -czf "$BACKUP_DIR/$(basename "$target")-backup.tar.gz" "$target"

 echo "Backed up $target at $(date)" >> "$LOG_FILE"

 done

}

cleanup_old_backups() {

 find /backup -type d -mtime +$RETENTION_DAYS -exec rm -rf {} \;

 echo "Cleaned up backups older than $RETENTION_DAYS days" >> "$LOG_FILE"

}

main() {

 create_backup_directory

 perform_system_backup

 cleanup_old_backups

 echo "Backup process completed successfully" >> "$LOG_FILE"

}

main

Backup Script Analysis:

1. Explain the backup strategy implemented
2. Discuss the importance of log tracking
3. Identify potential improvements for reliability

[Space for backup script analysis]

Advanced Bash Scripting Techniques

Learning Objectives

By the end of this worksheet, students will:

Understand advanced bash scripting concepts
Develop practical scripting skills
Learn critical safety protocols in script development
Explore real-world applications of bash scripting

Bash Scripting Fundamentals: Diagnostic Challenge

Examine the following script fragments and complete the challenges:

#!/bin/bash

Basic script structure example

echo "Welcome to Bash Scripting!"

read -p "Enter your name: " username

echo "Hello, $username!"

Challenge Questions:

1. Explain the purpose of the shebang line (#!) in this script
2. Identify the command used for user input
3. Describe how variables are used in this script

[Space for your answers]

Advanced Scripting Techniques: Coding Challenge

Security Tip: Always validate and sanitize user inputs to prevent potential security vulnerabilities.

Challenge Scenario: System Disk Space Monitor

Develop a bash script that:

Checks current system disk space
Alerts if disk usage exceeds 80%
Logs system events with timestamps

#!/bin/bash

Disk Space Monitoring Script

DISK_THRESHOLD=80

CURRENT_USAGE=$(df -h / | awk '/\// {print $(NF-1)}' | sed 's/%//')

if ["$CURRENT_USAGE" -gt "$DISK_THRESHOLD"]; then

 echo "ALERT: Disk space usage is critical!" >> /var/log/disk_monitor.log

 mail -s "Disk Space Warning" admin@example.com << EOF

Disk usage has exceeded $DISK_THRESHOLD%

Current usage: $CURRENT_USAGE%

EOF

fi

Challenge Tasks:

1. Explain the purpose of each line in the script
2. Identify potential improvements for error handling
3. Suggest additional monitoring features

[Space for script analysis and improvements]

