

Mastering Vector Data Structures and Algorithms in Python

Student Name:
Class:
Due Date:
ntroduction to Vector Data Structures and Algorithms
Essential Understanding:
 Definition of vectors and their importance in programming Basic vector operations, such as addition and scalar multiplication Introduction to NumPy and Matplotlib libraries
Complete these concept checks:
Define what a vector is and provide an example of its use in programming.
2. Write a Python program that creates a vector with 3 elements and prints its components.

Vector Basics and Operations

Vector Addition and Scalar Multiplication: Write a Python program that performs basic vector operations, such as addition and scalar multiplication. **Matrix Multiplication:** Use the NumPy library to perform matrix multiplication. **Vector Visualization:** Use the Matplotlib library to visualize a 2D vector.

Create a Python program that visualizes a 3D vector using Matplotlib.					

Algorithm Implementation and Real-World Applications

Choose ONE of these topics for detailed research:

Scientific Simulations: Write a Python program that simulates a real-world application of vec
such as a scientific simulation or engineering problem.

oo any combination:
se any combination:
mplement an advanced algorithm, such as calculating the eigenvalues and eigenvectors of matrix.
ilauix.

Assessment and Extension Activities

To assess your understanding of vector data structures and algorithms, complete the following tasks:

Create a Python program that calculates the magnitude and direction of a vector.
2. Write a Dython program that performs basic vector enerations, such as addition and scalar
Write a Python program that performs basic vector operations, such as addition and scalar multiplication.
Extension Activities:
Implement an advanced algorithm, such as calculating the eigenvalues and eigenvectors of a
matrix.
2. Create a Python program that simulates a real-world application of vectors, such as a game or
simulation.

Glossary and References

Glossary:

- Vector: A mathematical object with both magnitude and direction.
- Matrix: A rectangular array of numbers.
- NumPy: A library for the Python programming language, providing support for large, multidimensional arrays and matrices.

References:

1. NumPy documentation: https://numpy.org/doc/

2. Matplotlib documentation: https://matplotlib.org/docs/

3. Pygame documentation: https://www.pygame.org/docs/

Vector Operations and Transformations

Vectors can be added, subtracted, and scaled using various operations. These operations are essential in linear algebra and are used extensively in computer graphics, physics, and engineering. The addition of two vectors results in a new vector that is the sum of the corresponding components of the original vectors. Similarly, the subtraction of two vectors results in a new vector that is the difference of the corresponding components of the original vectors.

Example: Vector Addition

Consider two vectors A = (2, 3) and B = (4, 5). The sum of these vectors is C = A + B = (2 + 4, 3 + 5) = (6, 8).

Task: Vector Operations

1.	Write a Python program that performs vector addition and subtraction.
L	

2.	Use the NumF	⊃y library to pe	erform vector sc	aling and norma	alization.	

Linear Independence and Span

Linear independence is a fundamental concept in linear algebra that describes a set of vectors that are not linearly dependent. A set of vectors is said to be linearly independent if none of the vectors in the set can be expressed as a linear combination of the other vectors. The span of a set of vectors is the set of all linear combinations of the vectors.

Case Study: Linear Independence

Consider three vectors A = (1, 0, 0), B = (0, 1, 0), and C = (0, 0, 1). These vectors are linearly independent because none of them can be expressed as a linear combination of the other two. The span of these vectors is the entire 3D space.

Practice Questions:

1.	Determine whether the vectors $A = (1, 2)$ and $B = (3, 4)$ are linearly independent.
2.	Find the span of the vectors A = (1, 0) and B = (0, 1).
	anyaluaa and Eiganyaatara
Eig	envalues and Eigenvectors
Eig	envalues and Eigenvectors
Eige	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a
Eige vecto	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a or. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled
Eige vecto	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a
Eigei vecto versi	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a or. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue.
Eigei vecto versi	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a or. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled
Eiger vecto versi Exa	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a or. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. mple: Eigenvalues and Eigenvectors
Eiger vecto versi Exa Cons	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a or. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue.
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a process. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled control of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2.
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a br. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Indeed the distribution is an eigenvector of T and the properties of the propertie
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a process. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled control of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2.
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eiger vectoversi Exa Conswith	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eigervectoversi Exa Conswith Task	avalues and eigenvectors are scalar values that represent how much a linear transformation changes a process. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Idea a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors Write a Python program that calculates the eigenvalues and eigenvectors of a matrix.
Eigervectoversi Exa Conswith Task	nvalues and eigenvectors are scalar values that represent how much a linear transformation changes a pr. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Index a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors
Eigervectoversi Exa Conswith Task	avalues and eigenvectors are scalar values that represent how much a linear transformation changes a process. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Idea a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors Write a Python program that calculates the eigenvalues and eigenvectors of a matrix.
Eigervectoversi Exa Conswith Task	avalues and eigenvectors are scalar values that represent how much a linear transformation changes a process. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Idea a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors Write a Python program that calculates the eigenvalues and eigenvectors of a matrix.
Eigervectoversi Exa Conswith Task	avalues and eigenvectors are scalar values that represent how much a linear transformation changes a process. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Ider a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors Write a Python program that calculates the eigenvalues and eigenvectors of a matrix.
Eigervectoversi Exa Conswith Task	avalues and eigenvectors are scalar values that represent how much a linear transformation changes a process. An eigenvector is a non-zero vector that, when multiplied by a linear transformation, results in a scaled on of itself. The scalar value that is multiplied by the eigenvector is called the eigenvalue. Imple: Eigenvalues and Eigenvectors Idea a linear transformation T that maps a vector A to a vector B. If T(A) = 2A, then A is an eigenvector of T eigenvalue 2. In Eigenvalues and Eigenvectors Write a Python program that calculates the eigenvalues and eigenvectors of a matrix.

and Transition Matrices
ematical system that undergoes transitions from one state to another. The probability state to another is given by a transition matrix. The transition matrix is a square matrix nd column j represents the probability of transitioning from state i to state j.
Chain
with two states: state A and state B. The transition matrix is given by:
oning from state A to state B is 0.3, and the probability of transitioning from state B to
of transitioning from state A to state B in two steps.
S 1

2. Calculate the steady-state probability distribution of the Markov chain.

Page Rank Algorithm

The PageRank algorithm is a link analysis algorithm used by Google to rank web pages in their search engine results. The algorithm assigns a numerical weight to each web page, called the PageRank, which represents the probability that a random surfer will land on that page.

Example: Page Ra	ank Algorithm	
	n with three pages: A, B, and C. The PageRank algorithm ass and quality of links pointing to it.	igns a score to each page
Task: Page Rank Alg	gorithm	
1. Write a Python p	program that implements the PageRank algorithm.	
2. Use the NumPy	library to calculate the PageRank scores for a given web gra	ph.
Conclusion a	nd Future Directions	
applications in various	data structures and algorithms are essential in computer scier s fields. The concepts of linear independence, span, eigenvalural algebra and are used extensively in machine learning, data a	ues, and eigenvectors are
Case Study: Futu	re Directions	
	where you are working on a project that involves analyzing largest sourse to develop efficient algorithms for data analysis and	
Practice Questions:		
1. What are some p	potential applications of vector data structures and algorithms	s in your field of interest?

problems?	ed in this course to develop innovative solutions to real-world
	A BLANIT
	OPLANIT
	TEACHERS
Mastering Ve	ector Data Structures and
	orithms in Python
7.190	The state of the s
Student Name:	
Student Name:	
Class:	
Due Date:	
Introduction to Vector I	Data Structures and Algorithms
Essential Understanding:	
Definition of vectors and their im	
Basic vector operations, such asIntroduction to NumPy and Mat	s addition and scalar multiplication plotlib libraries
·	
Complete these concept checks:	
Complete these concept checks: 1. Define what a vector is and prov	vide an example of its use in programming.
	vide an example of its use in programming.
	vide an example of its use in programming.
	vide an example of its use in programming.

2.	Write a Python program that creates a vector with 3 elements and prints its components.

Vector Basics and Operations

Vector Addition and Scalar Multiplication: Write a Python program that performs basic vector operations, such as addition and scalar multiplication. **Matrix Multiplication:** Use the NumPy library to perform matrix multiplication. **Vector Visualization:** Use the Matplotlib library to visualize a 2D vector.

Create a Python program that visualizes a 3D vector using Matplotlib.					

Algorithm Implementation and Real-World Applications

Choose ONE of these topics for detailed research:

1.	Game Development: Research how vectors are used in game development and create a simple game that involves calculating the distance between two objects on the screen.
	Scientific Simulations: Write a Python program that simulates a real-world application of vectors such as a scientific simulation or engineering problem.
	<u> </u>
	se any combination:
	Implement an advanced algorithm, such as calculating the eigenvalues and eigenvectors of a matrix.
2.	Create a Python program that simulates a real-world application of vectors, such as a game or simulation.

Assessment and Extension Activities

To assess your understanding of vector data structures and algorithms, complete the following tasks:

Create a Python program that calculates the magnitude and direction of a vector.
2. Write a Python program that performs basic vector operations, such as addition and scalar
multiplication.
Extension Activities:
Implement an advanced algorithm, such as calculating the eigenvalues and eigenvectors of a
matrix.
2. Create a Python program that simulates a real-world application of vectors, such as a game or
simulation.

Glossary and References

Glossary:

- Vector: A mathematical object with both magnitude and direction.
- Matrix: A rectangular array of numbers.
- NumPy: A library for the Python programming language, providing support for large, multidimensional arrays and matrices.

References:

1. NumPy documentation: https://numpy.org/doc/

2. Matplotlib documentation: https://matplotlib.org/docs/

3. Pygame documentation: https://www.pygame.org/docs/

Congratulations on completing the Vector Data Structures and Algorithms in Python course!