

SECTION 1: DIAGNOSTIC ASSESSMENT

Conceptual Understanding Diagnostic

Learning Objectives:

- Assess prior knowledge of integration concepts
- Evaluate understanding of fundamental integration principles

Complete the following assessment to demonstrate your current understanding of integration techniques.

- 1. 1. Define integration in your own words. Consider its geometric and mathematical significance.
- 2. 2. Explain the key differences between definite and indefinite integration. Provide specific examples to support your explanation.

3. 3. Why is the constant of integration (+C) crucial in indefinite integration? Illustrate with a practical example.

Quick Calculation Challenge

Solve the following integration problems. Show your complete work.

4. 1. $\int (3x^2 + 2x) dx =$

5. **2.** $\int \sin(x) dx =$

6. **3.** Evaluate $\int [0 \text{ to } 2](x^2 + 3)dx =$

SECTION 2: INTEGRATION TECHNIQUE EXPLORATION

Power Rule Integration	
Key Technique: The power rule for integration states that $\int x^n dx = \frac{x^n(n+1)}{n+1} + C$, where $n \neq -1$	
 7. 1. Solve the following integration problems: \$\int_x^4 dx = 	
• $\int (2x^3 - 5x^2 + 3x) dx =$	
8. 2. Explain the step-by-step process you used to solve these problems:	

Trigonometric Function Integration

Integration Identities:

- $\int \cos(x) dx = \sin(x) + C$
- ∫sin(x)dx = -cos(x) + C
- $\int \sec^2(x) dx = \tan(x) + C$
- 9. 1. Complete the following integrations:
 - $\circ \int \cos(x) dx =$

• $\int tan(x)dx =$

С	$\int \sec^2(x) dx =$	

SECTION 3: ADVANCED INTEGRATION TECHNIQUES

Substitutio	on Method (u-Substitution)
Core Prin transform	iciple: U-substitution allows complex integrals to be simplified by introducing a new variable nation.
10. 1. App ∘∫	ly u-substitution to solve the following integrals: $x\sqrt{(x^2+1)dx} =$
o	$(3x+2)^2 dx =$
11. 2 . Des	cribe the key steps in the u-substitution method:
ntegration	ı by Parts
Formula: Useful fo	∫u dv = uv - ∫v du r integrating products of different function types
12. 1. Solv ∘∫	re these integration by parts problems: fx cos(x)dx =
0 ∫	$\ln(x)dx =$

13. :	Create a strategy map for selecting u and dv in integration by parts:	

SECTION 4: DEFINITE INTEGRATION APPLICATIONS

 Diagrar 	n and explain	the disk meth	od visualizati	on:		

SECTION 5: ADVANCED INTEGRATION CHALLENGES

Improper Integrals
Definition: Integrals with infinite limits or discontinuous functions Requires limit evaluation and careful analysis
18. 1. Evaluate these improper integrals: • $\int [1 \text{ to } \infty] (1/x^2) dx =$
• $\int [0 \text{ to } 1] (1/\sqrt{x}) dx =$
19. 2. Discuss convergence and divergence criteria:

Numerical Integration Techniques

Methods:

- Trapezoidal Rule
- Simpson's Rule
- Numerical approximation strategies

20. 1. Apply numerical integration techniques:

• Approximate $\int [0 \text{ to } 1] \sin(x) dx$ using Trapezoidal Rule with 4 subintervals

• Compare numerical and analytical integration results

21. **2.** Create a comparison chart of numerical integration methods:

SECTION 1: DIAGNOSTIC ASSESSMENT

Conceptual Understanding Diagnostic

Learning Objectives:

- Assess prior knowledge of integration concepts
- Evaluate understanding of fundamental integration principles

Complete the following assessment to demonstrate your current understanding of integration techniques.

- 1. 1. Define integration in your own words. Consider its geometric and mathematical significance.
- 2. 2. Explain the key differences between definite and indefinite integration. Provide specific examples to support your explanation.

3. 3. Why is the constant of integration (+C) crucial in indefinite integration? Illustrate with a practical example.

Quick Calculation Challenge

Solve the following integration problems. Show your complete work.

4. 1. $\int (3x^2 + 2x) dx =$

5. **2.** $\int \sin(x) dx =$

6. **3.** Evaluate $\int [0 \text{ to } 2](x^2 + 3)dx =$

SECTION 2: INTEGRATION TECHNIQUE EXPLORATION

Power Rule Integration	
Key Technique: The power rule for integration states that $\int x^n dx = (x^n(n+1))/(n+1) + C$, where $n \neq -1$	I
 7. 1. Solve the following integration problems: o ∫x⁴dx = 	
• $\int (2x^3 - 5x^2 + 3x) dx =$	
8. 2. Explain the step-by-step process you used to solve these problems:	

Trigonometric Function Integration

Integration Identities:

- $\int \cos(x) dx = \sin(x) + C$
- $\int \sin(x) dx = -\cos(x) + C$
- $\int \sec^2(x) dx = \tan(x) + C$
- 9. 1. Complete the following integrations:
 - $\circ \int \cos(x) dx =$

• $\int tan(x)dx =$

$ec^{2}(x)dx =$								
	ec*(x)dx =	2c ⁻ (x)dx =	ec-(x)dx =					

Final Reflection

Take a moment to reflect on the integration techniques you've explored. What new insights have you gained about calculus and mathematical problem-solving?